Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Part One: Find the probability of rolling a prime number on a six-sided die, given that the number is even. Use [tex]P[/tex] for prime and [tex]E[/tex] for even.

[tex]\[
\begin{array}{l}
P(P \mid E)=\frac{P(P \cap E)}{P(E)} \\
=\frac{1/6}{1/2} \\
=\frac{1}{6} \cdot \frac{2}{1} \\
=\frac{1}{3}
\end{array}
\][/tex]

(Enter your answer as a reduced fraction using / for the fraction bar. Do not use any spaces.)


Sagot :

Let's address the given problem step by step.

1. Understanding the Events:
- We are given a six-sided die, which has the numbers: 1, 2, 3, 4, 5, and 6.
- We need to find the probability of rolling a prime number, given that the number rolled is even.

2. Identify Even and Prime Numbers on a Six-Sided Die:
- Even numbers on a six-sided die: 2, 4, 6.
- Prime numbers on a six-sided die: 2, 3, 5.
- Notice that the only number that is both even and prime is 2.

3. Defining the Probabilities:
- Let [tex]\( P(P \cap E) \)[/tex] represent the probability of rolling a number that is both prime and even.
- Let [tex]\( P(E) \)[/tex] represent the probability of rolling an even number.

4. Compute [tex]\( P(P \cap E) \)[/tex]:
- There is only one outcome (2) that is both prime and even out of six possible outcomes on the die.
- Thus, [tex]\( P(P \cap E) = \frac{1}{6} \)[/tex].

5. Compute [tex]\( P(E) \)[/tex]:
- There are three even numbers (2, 4, 6) out of the six possible outcomes on the die.
- Thus, [tex]\( P(E) = \frac{1}{2} \)[/tex].

6. Applying Conditional Probability Formula:
- The conditional probability formula is:
[tex]\[ P(P \mid E) = \frac{P(P \cap E)}{P(E)} \][/tex]

7. Calculate [tex]\( P(P \mid E) \)[/tex]:
- Substitute [tex]\( P(P \cap E) \)[/tex] and [tex]\( P(E) \)[/tex] into the formula:
[tex]\[ P(P \mid E) = \frac{\frac{1}{6}}{\frac{1}{2}} \][/tex]

8. Simplify the Expression:
- Dividing by a fraction is the same as multiplying by its reciprocal. Thus:
[tex]\[ P(P \mid E) = \frac{1}{6} \times \frac{2}{1} = \frac{2}{6} = \frac{1}{3} \][/tex]

Therefore, the probability of rolling a prime number given that the number is even is:

[tex]\[ \boxed{\frac{1}{3}} \][/tex]