Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To graph the function [tex]\( f(x) = 3 \sqrt{x} \)[/tex], follow these steps:
1. Understand the Function: The function [tex]\( f(x) = 3 \sqrt{x} \)[/tex] is a transformation of the basic square root function [tex]\( \sqrt{x} \)[/tex]. Here, the function is multiplied by 3, which vertically stretches the graph.
2. Identify Key Points:
- When [tex]\( x = 0 \)[/tex], [tex]\( f(x) = 3 \sqrt{0} = 0 \)[/tex].
- When [tex]\( x = 1 \)[/tex], [tex]\( f(x) = 3 \sqrt{1} = 3 \)[/tex].
- When [tex]\( x = 4 \)[/tex], [tex]\( f(x) = 3 \sqrt{4} = 6 \)[/tex].
- When [tex]\( x = 9 \)[/tex], [tex]\( f(x) = 3 \sqrt{9} = 9 \)[/tex].
3. Determine the Domain and Range:
- Domain: Since the square root function [tex]\( \sqrt{x} \)[/tex] is only defined for [tex]\( x \geq 0 \)[/tex], the domain of [tex]\( f(x) = 3 \sqrt{x} \)[/tex] is also [tex]\( x \geq 0 \)[/tex].
- Range: The vertical stretch does not affect the range starting at 0 and going to positive infinity. So, the range of [tex]\( f(x) \)[/tex] is [tex]\( y \geq 0 \)[/tex].
4. Plot the Points: Plot the points found in step 2:
- (0, 0)
- (1, 3)
- (4, 6)
- (9, 9)
5. Draw the Graph: Connect these points with a smooth curve that represents the general shape of the square root function, vertically stretched by a factor of 3.
The graph will start from the origin (0, 0) and gradually rise, becoming less steep as [tex]\( x \)[/tex] increases, reflecting the growth of the square root function but stretched vertically by a factor of 3.
This completes the graph of the function [tex]\( f(x) = 3 \sqrt{x} \)[/tex].
1. Understand the Function: The function [tex]\( f(x) = 3 \sqrt{x} \)[/tex] is a transformation of the basic square root function [tex]\( \sqrt{x} \)[/tex]. Here, the function is multiplied by 3, which vertically stretches the graph.
2. Identify Key Points:
- When [tex]\( x = 0 \)[/tex], [tex]\( f(x) = 3 \sqrt{0} = 0 \)[/tex].
- When [tex]\( x = 1 \)[/tex], [tex]\( f(x) = 3 \sqrt{1} = 3 \)[/tex].
- When [tex]\( x = 4 \)[/tex], [tex]\( f(x) = 3 \sqrt{4} = 6 \)[/tex].
- When [tex]\( x = 9 \)[/tex], [tex]\( f(x) = 3 \sqrt{9} = 9 \)[/tex].
3. Determine the Domain and Range:
- Domain: Since the square root function [tex]\( \sqrt{x} \)[/tex] is only defined for [tex]\( x \geq 0 \)[/tex], the domain of [tex]\( f(x) = 3 \sqrt{x} \)[/tex] is also [tex]\( x \geq 0 \)[/tex].
- Range: The vertical stretch does not affect the range starting at 0 and going to positive infinity. So, the range of [tex]\( f(x) \)[/tex] is [tex]\( y \geq 0 \)[/tex].
4. Plot the Points: Plot the points found in step 2:
- (0, 0)
- (1, 3)
- (4, 6)
- (9, 9)
5. Draw the Graph: Connect these points with a smooth curve that represents the general shape of the square root function, vertically stretched by a factor of 3.
The graph will start from the origin (0, 0) and gradually rise, becoming less steep as [tex]\( x \)[/tex] increases, reflecting the growth of the square root function but stretched vertically by a factor of 3.
This completes the graph of the function [tex]\( f(x) = 3 \sqrt{x} \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.