Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To verify that [tex]\( g(x) = \frac{1}{5}x + 5 \)[/tex] is the inverse of [tex]\( f(x) = 5x - 25 \)[/tex], we need to check if the composition [tex]\( g(f(x)) \)[/tex] simplifies to [tex]\( x \)[/tex]. Let's examine this step-by-step:
1. Define the composition [tex]\( g(f(x)) \)[/tex]:
[tex]\[ g(f(x)) = g(5x - 25) \][/tex]
Since [tex]\( g(x) = \frac{1}{5}x + 5 \)[/tex], we substitute [tex]\( 5x - 25 \)[/tex] in place of [tex]\( x \)[/tex]:
[tex]\[ g(5x - 25) = \frac{1}{5}(5x - 25) + 5 \][/tex]
2. Simplify the expression [tex]\( \frac{1}{5}(5x - 25) + 5 \)[/tex]:
[tex]\[ \frac{1}{5}(5x - 25) = \frac{1}{5} \cdot 5x - \frac{1}{5} \cdot 25 = x - 5 \][/tex]
Thus,
[tex]\[ \frac{1}{5}(5x - 25) + 5 = x - 5 + 5 = x \][/tex]
So, the simplified expression [tex]\( \frac{1}{5}(5x - 25) + 5 \)[/tex] is indeed [tex]\( x \)[/tex]. This verifies that [tex]\( g(x) \)[/tex] is the inverse of [tex]\( f(x) \)[/tex].
Therefore, the given expression that verifies [tex]\( g(x) \)[/tex] is the inverse of [tex]\( f(x) \)[/tex] is:
[tex]\[ \frac{1}{5}(5x - 25) + 5 \][/tex]
1. Define the composition [tex]\( g(f(x)) \)[/tex]:
[tex]\[ g(f(x)) = g(5x - 25) \][/tex]
Since [tex]\( g(x) = \frac{1}{5}x + 5 \)[/tex], we substitute [tex]\( 5x - 25 \)[/tex] in place of [tex]\( x \)[/tex]:
[tex]\[ g(5x - 25) = \frac{1}{5}(5x - 25) + 5 \][/tex]
2. Simplify the expression [tex]\( \frac{1}{5}(5x - 25) + 5 \)[/tex]:
[tex]\[ \frac{1}{5}(5x - 25) = \frac{1}{5} \cdot 5x - \frac{1}{5} \cdot 25 = x - 5 \][/tex]
Thus,
[tex]\[ \frac{1}{5}(5x - 25) + 5 = x - 5 + 5 = x \][/tex]
So, the simplified expression [tex]\( \frac{1}{5}(5x - 25) + 5 \)[/tex] is indeed [tex]\( x \)[/tex]. This verifies that [tex]\( g(x) \)[/tex] is the inverse of [tex]\( f(x) \)[/tex].
Therefore, the given expression that verifies [tex]\( g(x) \)[/tex] is the inverse of [tex]\( f(x) \)[/tex] is:
[tex]\[ \frac{1}{5}(5x - 25) + 5 \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.