Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine whether the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] in the given table is proportional, we need to check if the ratio [tex]\( \frac{y}{x} \)[/tex] is constant for all data points.
Let's calculate the ratio [tex]\( \frac{y}{x} \)[/tex] for each pair of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values provided in the table:
1. For the first pair [tex]\((x = 1, y = 2)\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{2}{1} = 2.0 \][/tex]
2. For the second pair [tex]\((x = 3, y = 6)\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{6}{3} = 2.0 \][/tex]
3. For the third pair [tex]\((x = 7, y = 14)\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{14}{7} = 2.0 \][/tex]
Since the ratio [tex]\( \frac{y}{x} \)[/tex] is the same (2.0) for all the data points [tex]\((1, 2)\)[/tex], [tex]\((3, 6)\)[/tex], and [tex]\((7, 14)\)[/tex], we can conclude that the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is proportional.
Thus, the given table shows a proportional relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
Let's calculate the ratio [tex]\( \frac{y}{x} \)[/tex] for each pair of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values provided in the table:
1. For the first pair [tex]\((x = 1, y = 2)\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{2}{1} = 2.0 \][/tex]
2. For the second pair [tex]\((x = 3, y = 6)\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{6}{3} = 2.0 \][/tex]
3. For the third pair [tex]\((x = 7, y = 14)\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{14}{7} = 2.0 \][/tex]
Since the ratio [tex]\( \frac{y}{x} \)[/tex] is the same (2.0) for all the data points [tex]\((1, 2)\)[/tex], [tex]\((3, 6)\)[/tex], and [tex]\((7, 14)\)[/tex], we can conclude that the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is proportional.
Thus, the given table shows a proportional relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.