Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the domain of the given function
[tex]\[ f(x) = \sin \left(\sqrt{1-x^2}\right) + \sqrt{x+2} + \frac{1}{\log_{10}(x+1)}, \][/tex]
we need to ensure that each term within the function is well-defined for values of [tex]\( x \)[/tex].
### 1. Analyze [tex]\(\sin \left(\sqrt{1-x^2}\right)\)[/tex]:
The argument of the sine function is [tex]\(\sqrt{1-x^2}\)[/tex]. For the square root function to be defined, the expression inside the square root must be non-negative:
[tex]\[ 1 - x^2 \geq 0. \][/tex]
Solving this inequality:
[tex]\[ 1 - x^2 \geq 0 \implies x^2 \leq 1 \implies -1 \leq x \leq 1. \][/tex]
This provides the first constraint: [tex]\( x \in [-1, 1] \)[/tex].
### 2. Analyze [tex]\(\sqrt{x+2}\)[/tex]:
For the square root function to be defined, the argument must be non-negative:
[tex]\[ x + 2 \geq 0 \implies x \geq -2. \][/tex]
This provides the second constraint: [tex]\( x \in [-2, \infty) \)[/tex].
### 3. Analyze [tex]\(\frac{1}{\log_{10}(x+1)}\)[/tex]:
For this term to be defined and non-zero, the logarithm function in the denominator must be non-zero and its argument must be greater than zero (since the logarithm of a non-positive number is undefined and negative logarithms are not allowed as denominators):
[tex]\[ x + 1 > 0 \implies x > -1. \][/tex]
Additionally, we need to ensure that [tex]\(\log_{10}(x+1) \neq 0\)[/tex]:
[tex]\[ \log_{10}(x+1) = 0 \implies x+1 = 10^0 \implies x+1 = 1 \implies x = 0. \][/tex]
Hence, [tex]\( x \neq 0 \)[/tex].
Combining these constraints:
- From [tex]\(\sin \left(\sqrt{1-x^2}\right)\)[/tex]: [tex]\( x \in [-1, 1] \)[/tex].
- From [tex]\(\sqrt{x+2}\)[/tex]: [tex]\( x \geq -2 \)[/tex].
- From [tex]\(\frac{1}{\log_{10}(x+1)}\)[/tex]: [tex]\( x > -1\)[/tex] and [tex]\( x \neq 0 \)[/tex].
### 4. Combine all conditions:
To combine these conditions, we need the intersection of:
- [tex]\(x \in [-1, 1]\)[/tex]
- [tex]\(x \geq -1\)[/tex]
- [tex]\(x \neq 0\)[/tex]
The intersection of [tex]\(x \in [-1, 1]\)[/tex] and [tex]\(x \geq -1\)[/tex] is [tex]\(x \in [-1, 1]\)[/tex].
Excluding [tex]\(x = 0\)[/tex] from this interval gives:
[tex]\[ x \in [-1, 1] \setminus \{0\} = \{-1 \leq x < 0\} \cup \{0 < x \leq 1\}.\][/tex]
Therefore, the domain of the function [tex]\( f(x) \)[/tex] is:
[tex]\[ \boxed{[-1, 0) \cup (0, 1]}. \][/tex]
[tex]\[ f(x) = \sin \left(\sqrt{1-x^2}\right) + \sqrt{x+2} + \frac{1}{\log_{10}(x+1)}, \][/tex]
we need to ensure that each term within the function is well-defined for values of [tex]\( x \)[/tex].
### 1. Analyze [tex]\(\sin \left(\sqrt{1-x^2}\right)\)[/tex]:
The argument of the sine function is [tex]\(\sqrt{1-x^2}\)[/tex]. For the square root function to be defined, the expression inside the square root must be non-negative:
[tex]\[ 1 - x^2 \geq 0. \][/tex]
Solving this inequality:
[tex]\[ 1 - x^2 \geq 0 \implies x^2 \leq 1 \implies -1 \leq x \leq 1. \][/tex]
This provides the first constraint: [tex]\( x \in [-1, 1] \)[/tex].
### 2. Analyze [tex]\(\sqrt{x+2}\)[/tex]:
For the square root function to be defined, the argument must be non-negative:
[tex]\[ x + 2 \geq 0 \implies x \geq -2. \][/tex]
This provides the second constraint: [tex]\( x \in [-2, \infty) \)[/tex].
### 3. Analyze [tex]\(\frac{1}{\log_{10}(x+1)}\)[/tex]:
For this term to be defined and non-zero, the logarithm function in the denominator must be non-zero and its argument must be greater than zero (since the logarithm of a non-positive number is undefined and negative logarithms are not allowed as denominators):
[tex]\[ x + 1 > 0 \implies x > -1. \][/tex]
Additionally, we need to ensure that [tex]\(\log_{10}(x+1) \neq 0\)[/tex]:
[tex]\[ \log_{10}(x+1) = 0 \implies x+1 = 10^0 \implies x+1 = 1 \implies x = 0. \][/tex]
Hence, [tex]\( x \neq 0 \)[/tex].
Combining these constraints:
- From [tex]\(\sin \left(\sqrt{1-x^2}\right)\)[/tex]: [tex]\( x \in [-1, 1] \)[/tex].
- From [tex]\(\sqrt{x+2}\)[/tex]: [tex]\( x \geq -2 \)[/tex].
- From [tex]\(\frac{1}{\log_{10}(x+1)}\)[/tex]: [tex]\( x > -1\)[/tex] and [tex]\( x \neq 0 \)[/tex].
### 4. Combine all conditions:
To combine these conditions, we need the intersection of:
- [tex]\(x \in [-1, 1]\)[/tex]
- [tex]\(x \geq -1\)[/tex]
- [tex]\(x \neq 0\)[/tex]
The intersection of [tex]\(x \in [-1, 1]\)[/tex] and [tex]\(x \geq -1\)[/tex] is [tex]\(x \in [-1, 1]\)[/tex].
Excluding [tex]\(x = 0\)[/tex] from this interval gives:
[tex]\[ x \in [-1, 1] \setminus \{0\} = \{-1 \leq x < 0\} \cup \{0 < x \leq 1\}.\][/tex]
Therefore, the domain of the function [tex]\( f(x) \)[/tex] is:
[tex]\[ \boxed{[-1, 0) \cup (0, 1]}. \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.