Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the domain of the given function
[tex]\[ f(x) = \sin \left(\sqrt{1-x^2}\right) + \sqrt{x+2} + \frac{1}{\log_{10}(x+1)}, \][/tex]
we need to ensure that each term within the function is well-defined for values of [tex]\( x \)[/tex].
### 1. Analyze [tex]\(\sin \left(\sqrt{1-x^2}\right)\)[/tex]:
The argument of the sine function is [tex]\(\sqrt{1-x^2}\)[/tex]. For the square root function to be defined, the expression inside the square root must be non-negative:
[tex]\[ 1 - x^2 \geq 0. \][/tex]
Solving this inequality:
[tex]\[ 1 - x^2 \geq 0 \implies x^2 \leq 1 \implies -1 \leq x \leq 1. \][/tex]
This provides the first constraint: [tex]\( x \in [-1, 1] \)[/tex].
### 2. Analyze [tex]\(\sqrt{x+2}\)[/tex]:
For the square root function to be defined, the argument must be non-negative:
[tex]\[ x + 2 \geq 0 \implies x \geq -2. \][/tex]
This provides the second constraint: [tex]\( x \in [-2, \infty) \)[/tex].
### 3. Analyze [tex]\(\frac{1}{\log_{10}(x+1)}\)[/tex]:
For this term to be defined and non-zero, the logarithm function in the denominator must be non-zero and its argument must be greater than zero (since the logarithm of a non-positive number is undefined and negative logarithms are not allowed as denominators):
[tex]\[ x + 1 > 0 \implies x > -1. \][/tex]
Additionally, we need to ensure that [tex]\(\log_{10}(x+1) \neq 0\)[/tex]:
[tex]\[ \log_{10}(x+1) = 0 \implies x+1 = 10^0 \implies x+1 = 1 \implies x = 0. \][/tex]
Hence, [tex]\( x \neq 0 \)[/tex].
Combining these constraints:
- From [tex]\(\sin \left(\sqrt{1-x^2}\right)\)[/tex]: [tex]\( x \in [-1, 1] \)[/tex].
- From [tex]\(\sqrt{x+2}\)[/tex]: [tex]\( x \geq -2 \)[/tex].
- From [tex]\(\frac{1}{\log_{10}(x+1)}\)[/tex]: [tex]\( x > -1\)[/tex] and [tex]\( x \neq 0 \)[/tex].
### 4. Combine all conditions:
To combine these conditions, we need the intersection of:
- [tex]\(x \in [-1, 1]\)[/tex]
- [tex]\(x \geq -1\)[/tex]
- [tex]\(x \neq 0\)[/tex]
The intersection of [tex]\(x \in [-1, 1]\)[/tex] and [tex]\(x \geq -1\)[/tex] is [tex]\(x \in [-1, 1]\)[/tex].
Excluding [tex]\(x = 0\)[/tex] from this interval gives:
[tex]\[ x \in [-1, 1] \setminus \{0\} = \{-1 \leq x < 0\} \cup \{0 < x \leq 1\}.\][/tex]
Therefore, the domain of the function [tex]\( f(x) \)[/tex] is:
[tex]\[ \boxed{[-1, 0) \cup (0, 1]}. \][/tex]
[tex]\[ f(x) = \sin \left(\sqrt{1-x^2}\right) + \sqrt{x+2} + \frac{1}{\log_{10}(x+1)}, \][/tex]
we need to ensure that each term within the function is well-defined for values of [tex]\( x \)[/tex].
### 1. Analyze [tex]\(\sin \left(\sqrt{1-x^2}\right)\)[/tex]:
The argument of the sine function is [tex]\(\sqrt{1-x^2}\)[/tex]. For the square root function to be defined, the expression inside the square root must be non-negative:
[tex]\[ 1 - x^2 \geq 0. \][/tex]
Solving this inequality:
[tex]\[ 1 - x^2 \geq 0 \implies x^2 \leq 1 \implies -1 \leq x \leq 1. \][/tex]
This provides the first constraint: [tex]\( x \in [-1, 1] \)[/tex].
### 2. Analyze [tex]\(\sqrt{x+2}\)[/tex]:
For the square root function to be defined, the argument must be non-negative:
[tex]\[ x + 2 \geq 0 \implies x \geq -2. \][/tex]
This provides the second constraint: [tex]\( x \in [-2, \infty) \)[/tex].
### 3. Analyze [tex]\(\frac{1}{\log_{10}(x+1)}\)[/tex]:
For this term to be defined and non-zero, the logarithm function in the denominator must be non-zero and its argument must be greater than zero (since the logarithm of a non-positive number is undefined and negative logarithms are not allowed as denominators):
[tex]\[ x + 1 > 0 \implies x > -1. \][/tex]
Additionally, we need to ensure that [tex]\(\log_{10}(x+1) \neq 0\)[/tex]:
[tex]\[ \log_{10}(x+1) = 0 \implies x+1 = 10^0 \implies x+1 = 1 \implies x = 0. \][/tex]
Hence, [tex]\( x \neq 0 \)[/tex].
Combining these constraints:
- From [tex]\(\sin \left(\sqrt{1-x^2}\right)\)[/tex]: [tex]\( x \in [-1, 1] \)[/tex].
- From [tex]\(\sqrt{x+2}\)[/tex]: [tex]\( x \geq -2 \)[/tex].
- From [tex]\(\frac{1}{\log_{10}(x+1)}\)[/tex]: [tex]\( x > -1\)[/tex] and [tex]\( x \neq 0 \)[/tex].
### 4. Combine all conditions:
To combine these conditions, we need the intersection of:
- [tex]\(x \in [-1, 1]\)[/tex]
- [tex]\(x \geq -1\)[/tex]
- [tex]\(x \neq 0\)[/tex]
The intersection of [tex]\(x \in [-1, 1]\)[/tex] and [tex]\(x \geq -1\)[/tex] is [tex]\(x \in [-1, 1]\)[/tex].
Excluding [tex]\(x = 0\)[/tex] from this interval gives:
[tex]\[ x \in [-1, 1] \setminus \{0\} = \{-1 \leq x < 0\} \cup \{0 < x \leq 1\}.\][/tex]
Therefore, the domain of the function [tex]\( f(x) \)[/tex] is:
[tex]\[ \boxed{[-1, 0) \cup (0, 1]}. \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.