Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To address the communication range of a tower situated within a grid, consider the equation [tex]\(x^2 + y^2 = 64\)[/tex]. We'll analyze this equation step by step to determine the location of the tower (the center of the circle) and the radius of the signal coverage.
1. Understand the Equation:
The equation [tex]\(x^2 + y^2 = 64\)[/tex] represents a circle in a Cartesian coordinate system. This is a standard form of a circle's equation, which is generally written as:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
Here, [tex]\((h, k)\)[/tex] represents the coordinates of the center of the circle, and [tex]\(r\)[/tex] the radius of the circle.
2. Identify the Center:
In our case, the equation provided is:
[tex]\[ x^2 + y^2 = 64 \][/tex]
Comparing this with the general form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], we see that [tex]\(h = 0\)[/tex] and [tex]\(k = 0\)[/tex]. Therefore, the center of the circle is:
[tex]\[ (h, k) = (0, 0) \][/tex]
3. Determine the Radius:
The term on the right-hand side of the equation [tex]\(x^2 + y^2 = 64\)[/tex] is [tex]\(64\)[/tex], which corresponds to [tex]\(r^2\)[/tex] in the general circle equation. To find [tex]\(r\)[/tex], the radius, we take the square root of 64:
[tex]\[ r = \sqrt{64} = 8 \][/tex]
4. Conclusion:
Based on these calculations, we can conclude that the communication tower is located at the center of the grid with coordinates [tex]\((0, 0)\)[/tex] and it sends signals within a circular area that has a radius of 8 units.
Summarizing, the center of the communication tower's signal coverage is at [tex]\((0, 0)\)[/tex] and the radius of this coverage is 8 units.
1. Understand the Equation:
The equation [tex]\(x^2 + y^2 = 64\)[/tex] represents a circle in a Cartesian coordinate system. This is a standard form of a circle's equation, which is generally written as:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
Here, [tex]\((h, k)\)[/tex] represents the coordinates of the center of the circle, and [tex]\(r\)[/tex] the radius of the circle.
2. Identify the Center:
In our case, the equation provided is:
[tex]\[ x^2 + y^2 = 64 \][/tex]
Comparing this with the general form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], we see that [tex]\(h = 0\)[/tex] and [tex]\(k = 0\)[/tex]. Therefore, the center of the circle is:
[tex]\[ (h, k) = (0, 0) \][/tex]
3. Determine the Radius:
The term on the right-hand side of the equation [tex]\(x^2 + y^2 = 64\)[/tex] is [tex]\(64\)[/tex], which corresponds to [tex]\(r^2\)[/tex] in the general circle equation. To find [tex]\(r\)[/tex], the radius, we take the square root of 64:
[tex]\[ r = \sqrt{64} = 8 \][/tex]
4. Conclusion:
Based on these calculations, we can conclude that the communication tower is located at the center of the grid with coordinates [tex]\((0, 0)\)[/tex] and it sends signals within a circular area that has a radius of 8 units.
Summarizing, the center of the communication tower's signal coverage is at [tex]\((0, 0)\)[/tex] and the radius of this coverage is 8 units.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.