Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

[tex]$\triangle XYZ$[/tex] was reflected over a vertical line, then dilated by a scale factor of [tex]$\frac{1}{2}$[/tex], resulting in [tex]$\triangle X^{\prime} Y^{\prime} Z^{\prime}$[/tex]. Which must be true of the two triangles? Select three options.

A. [tex]$\triangle XYZ \sim \triangle X^{\prime} Y^{\prime} Z^{\prime}$[/tex]

B. [tex]$\angle XZY \cong \angle YZX$[/tex]

C. [tex]$\overline{YX} \approx \overline{Y^{\prime}X^{\prime}}$[/tex]

D. [tex]$XZ = 2X^{\prime}Z^{\prime}$[/tex]

E. [tex]$m\angle YXZ = 2m\angle Y^{\prime}X^{\prime}Z^{\prime}$[/tex]


Sagot :

To analyze the given transformations and determine which statements must be true, let's go through each statement step-by-step:

1. Statement 1: [tex]$\triangle XYZ \sim \triangle X'Y'Z$[/tex]
- Similarity of Triangles: When a triangle undergoes a reflection, it remains similar to the original triangle because their angles are congruent and the shapes are the same. Dilation by a scale factor of [tex]$\frac{1}{2}$[/tex] will also result in similar triangles because it preserves the shape and angles, even though the side lengths are halved.
- Conclusion: This statement is true.

2. Statement 2: [tex]$\angle XZY \cong \angle YZX$[/tex]
- Congruency of Angles: Reflection does not change the measures of angles within the triangle. Dilation preserves angles as well.
- Conclusion: This statement is true.

3. Statement 3: [tex]$\overline{YX} \approx \overline{Y'X'}$[/tex]
- Segment Lengths: Dilation by a scale factor of [tex]$\frac{1}{2}$[/tex] changes the lengths of the sides. Specifically, the sides of [tex]$\triangle X'Y'Z'$[/tex] are half the lengths of the corresponding sides in [tex]$\triangle XYZ$[/tex]. Therefore, [tex]$\overline{YX}$[/tex] is not approximately equal to [tex]$\overline{Y'X'}$[/tex] because [tex]$\overline{YX'} = \frac{1}{2}\overline{YX}$[/tex].
- Conclusion: This statement is false.

4. Statement 4: [tex]$XZ = 2 X'Z'$[/tex]
- Relation of Side Lengths: Given the scale factor of [tex]$\frac{1}{2}$[/tex] for dilation, sides of [tex]$\triangle XYZ$[/tex] will be twice as long as the corresponding sides in [tex]$\triangle X'Y'Z'$[/tex]. Therefore, [tex]$XZ = 2 X'Z'$[/tex] holds true.
- Conclusion: This statement is true.

5. Statement 5: [tex]$m\angle YXZ = 2m\angle Y'X'Z'$[/tex]
- Scalability of Angles: Reflections and dilations preserve the measure of angles; they do not double or halve the angles. Hence, [tex]$m\angle YXZ$[/tex] should be equal to [tex]$m\angle Y'X'Z'$[/tex].
- Conclusion: This statement is false.

Final Conclusion: The true statements are:
- [tex]$\triangle XYZ \sim \triangle X'Y'Z$[/tex]
- [tex]$\angle XZY \cong \angle YZX$[/tex]
- [tex]$XZ = 2X'Z'$[/tex]

Therefore, the correct options to select are:
1, 2, and 4.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.