Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the scaling factor that transforms the dimensions of cylinder [tex]\(A\)[/tex] into the dimensions of cylinder [tex]\(B\)[/tex], we need to follow a series of steps.
1. Compute the radius of cylinder [tex]\(A\)[/tex]:
The circumference of cylinder [tex]\(A\)[/tex] is given as [tex]\(4 \pi\)[/tex] units. The formula for the circumference of a circle is:
[tex]\[ \text{Circumference} = 2 \pi r \][/tex]
Where [tex]\(r\)[/tex] is the radius. We can solve for [tex]\(r\)[/tex] by setting:
[tex]\[ 2 \pi r = 4 \pi \][/tex]
Dividing both sides by [tex]\(2 \pi\)[/tex]:
[tex]\[ r = \frac{4 \pi}{2 \pi} = 2 \][/tex]
Thus, the radius of the base of cylinder [tex]\(A\)[/tex] is [tex]\(2\)[/tex] units.
2. Compute the radius of cylinder [tex]\(B\)[/tex]:
The area of the base of cylinder [tex]\(B\)[/tex] is given as [tex]\(9 \pi\)[/tex] units. The formula for the area of a circle is:
[tex]\[ \text{Area} = \pi r^2 \][/tex]
Where [tex]\(r\)[/tex] is the radius. We can solve for [tex]\(r\)[/tex] by setting:
[tex]\[ \pi r^2 = 9 \pi \][/tex]
Dividing both sides by [tex]\(\pi\)[/tex]:
[tex]\[ r^2 = 9 \][/tex]
Taking the square root of both sides:
[tex]\[ r = \sqrt{9} = 3 \][/tex]
Thus, the radius of the base of cylinder [tex]\(B\)[/tex] is [tex]\(3\)[/tex] units.
3. Determine the scaling factor:
The scaling factor is the ratio of the radius of cylinder [tex]\(B\)[/tex] to the radius of cylinder [tex]\(A\)[/tex]:
[tex]\[ \text{Scaling factor} = \frac{\text{radius of cylinder } B}{\text{radius of cylinder } A} = \frac{3}{2} \][/tex]
Thus, the factor by which the dimensions of cylinder [tex]\(A\)[/tex] are scaled to produce the corresponding dimensions of cylinder [tex]\(B\)[/tex] is [tex]\(\boxed{\frac{3}{2}}\)[/tex].
1. Compute the radius of cylinder [tex]\(A\)[/tex]:
The circumference of cylinder [tex]\(A\)[/tex] is given as [tex]\(4 \pi\)[/tex] units. The formula for the circumference of a circle is:
[tex]\[ \text{Circumference} = 2 \pi r \][/tex]
Where [tex]\(r\)[/tex] is the radius. We can solve for [tex]\(r\)[/tex] by setting:
[tex]\[ 2 \pi r = 4 \pi \][/tex]
Dividing both sides by [tex]\(2 \pi\)[/tex]:
[tex]\[ r = \frac{4 \pi}{2 \pi} = 2 \][/tex]
Thus, the radius of the base of cylinder [tex]\(A\)[/tex] is [tex]\(2\)[/tex] units.
2. Compute the radius of cylinder [tex]\(B\)[/tex]:
The area of the base of cylinder [tex]\(B\)[/tex] is given as [tex]\(9 \pi\)[/tex] units. The formula for the area of a circle is:
[tex]\[ \text{Area} = \pi r^2 \][/tex]
Where [tex]\(r\)[/tex] is the radius. We can solve for [tex]\(r\)[/tex] by setting:
[tex]\[ \pi r^2 = 9 \pi \][/tex]
Dividing both sides by [tex]\(\pi\)[/tex]:
[tex]\[ r^2 = 9 \][/tex]
Taking the square root of both sides:
[tex]\[ r = \sqrt{9} = 3 \][/tex]
Thus, the radius of the base of cylinder [tex]\(B\)[/tex] is [tex]\(3\)[/tex] units.
3. Determine the scaling factor:
The scaling factor is the ratio of the radius of cylinder [tex]\(B\)[/tex] to the radius of cylinder [tex]\(A\)[/tex]:
[tex]\[ \text{Scaling factor} = \frac{\text{radius of cylinder } B}{\text{radius of cylinder } A} = \frac{3}{2} \][/tex]
Thus, the factor by which the dimensions of cylinder [tex]\(A\)[/tex] are scaled to produce the corresponding dimensions of cylinder [tex]\(B\)[/tex] is [tex]\(\boxed{\frac{3}{2}}\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.