Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's solve the problem step-by-step.
We are given that the price of a pizza is [tex]$\$[/tex] 7.99[tex]$ plus an additional $[/tex]\[tex]$ 1.35$[/tex] for each topping.
First, we need to write a function rule that gives the total price as a function of the number of toppings, [tex]$x$[/tex]. We can express the total price [tex]$f(x)$[/tex] as follows:
[tex]\[ f(x) = 7.99 + 1.35x \][/tex]
where [tex]$x$[/tex] is the number of toppings.
Now, we need to calculate the values of this function for given [tex]$x$[/tex] values:
1. For [tex]$x = 0$[/tex] (0 toppings):
[tex]\[ f(0) = 7.99 + 1.35(0) = 7.99 \][/tex]
2. For [tex]$x = 1$[/tex] (1 topping):
[tex]\[ f(1) = 7.99 + 1.35(1) = 7.99 + 1.35 = 9.34 \][/tex]
3. For [tex]$x = 2$[/tex] (2 toppings):
[tex]\[ f(2) = 7.99 + 1.35(2) = 7.99 + 2.70 = 10.69 \][/tex]
4. For [tex]$x = 6$[/tex] (6 toppings):
[tex]\[ f(6) = 7.99 + 1.35(6) = 7.99 + 8.10 = 16.09 \quad (\text{Note: correction from the table provided}) \][/tex]
5. For [tex]$x = 10$[/tex] (10 toppings):
[tex]\[ f(10) = 7.99 + 1.35(10) = 7.99 + 13.50 = 21.49 \][/tex]
So, the prices for each number of toppings in the table are derived as follows:
\begin{tabular}{|c|c|}
\hline number of toppings [tex]$(x)$[/tex] & price [tex]$f(x)$[/tex] \\
\hline 0 & 7.99 \\
\hline 1 & 9.34 \\
\hline 2 & 10.69 \\
\hline 6 & 16.09 (corrected) \\
\hline 10 & 21.49 \\
\hline
\end{tabular}
The function rule [tex]\( f \)[/tex] that gives the total price as a function of the number of toppings [tex]\( x \)[/tex] is:
[tex]\[ f(x) = 7.99 + 1.35x \][/tex]
We are given that the price of a pizza is [tex]$\$[/tex] 7.99[tex]$ plus an additional $[/tex]\[tex]$ 1.35$[/tex] for each topping.
First, we need to write a function rule that gives the total price as a function of the number of toppings, [tex]$x$[/tex]. We can express the total price [tex]$f(x)$[/tex] as follows:
[tex]\[ f(x) = 7.99 + 1.35x \][/tex]
where [tex]$x$[/tex] is the number of toppings.
Now, we need to calculate the values of this function for given [tex]$x$[/tex] values:
1. For [tex]$x = 0$[/tex] (0 toppings):
[tex]\[ f(0) = 7.99 + 1.35(0) = 7.99 \][/tex]
2. For [tex]$x = 1$[/tex] (1 topping):
[tex]\[ f(1) = 7.99 + 1.35(1) = 7.99 + 1.35 = 9.34 \][/tex]
3. For [tex]$x = 2$[/tex] (2 toppings):
[tex]\[ f(2) = 7.99 + 1.35(2) = 7.99 + 2.70 = 10.69 \][/tex]
4. For [tex]$x = 6$[/tex] (6 toppings):
[tex]\[ f(6) = 7.99 + 1.35(6) = 7.99 + 8.10 = 16.09 \quad (\text{Note: correction from the table provided}) \][/tex]
5. For [tex]$x = 10$[/tex] (10 toppings):
[tex]\[ f(10) = 7.99 + 1.35(10) = 7.99 + 13.50 = 21.49 \][/tex]
So, the prices for each number of toppings in the table are derived as follows:
\begin{tabular}{|c|c|}
\hline number of toppings [tex]$(x)$[/tex] & price [tex]$f(x)$[/tex] \\
\hline 0 & 7.99 \\
\hline 1 & 9.34 \\
\hline 2 & 10.69 \\
\hline 6 & 16.09 (corrected) \\
\hline 10 & 21.49 \\
\hline
\end{tabular}
The function rule [tex]\( f \)[/tex] that gives the total price as a function of the number of toppings [tex]\( x \)[/tex] is:
[tex]\[ f(x) = 7.99 + 1.35x \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.