Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the horizontal asymptote of the function [tex]\( y = \frac{3x + 27}{x - 9} \)[/tex], we need to look at the degrees of the polynomials in the numerator and the denominator.
1. Identify the degrees of the polynomials:
- The numerator is [tex]\( 3x + 27 \)[/tex]. The degree of the numerator is 1, since the highest power of [tex]\( x \)[/tex] is [tex]\( x^1 \)[/tex].
- The denominator is [tex]\( x - 9 \)[/tex]. The degree of the denominator is also 1, as the highest power of [tex]\( x \)[/tex] is [tex]\( x^1 \)[/tex].
2. Compare the degrees of the numerator and the denominator:
- Since the degrees of both the numerator and the denominator are equal, the horizontal asymptote is found by taking the ratio of the leading coefficients.
3. Determine the leading coefficients:
- The leading coefficient of the numerator [tex]\( 3x + 27 \)[/tex] is 3.
- The leading coefficient of the denominator [tex]\( x - 9 \)[/tex] is 1.
4. Calculate the horizontal asymptote:
- The horizontal asymptote is given by [tex]\( \frac{\text{leading coefficient of the numerator}}{\text{leading coefficient of the denominator}} \)[/tex].
- Therefore, the horizontal asymptote is [tex]\( y = \frac{3}{1} = 3 \)[/tex].
So, the horizontal asymptote for the function [tex]\( y = \frac{3x + 27}{x - 9} \)[/tex] is [tex]\( y = 3 \)[/tex].
1. Identify the degrees of the polynomials:
- The numerator is [tex]\( 3x + 27 \)[/tex]. The degree of the numerator is 1, since the highest power of [tex]\( x \)[/tex] is [tex]\( x^1 \)[/tex].
- The denominator is [tex]\( x - 9 \)[/tex]. The degree of the denominator is also 1, as the highest power of [tex]\( x \)[/tex] is [tex]\( x^1 \)[/tex].
2. Compare the degrees of the numerator and the denominator:
- Since the degrees of both the numerator and the denominator are equal, the horizontal asymptote is found by taking the ratio of the leading coefficients.
3. Determine the leading coefficients:
- The leading coefficient of the numerator [tex]\( 3x + 27 \)[/tex] is 3.
- The leading coefficient of the denominator [tex]\( x - 9 \)[/tex] is 1.
4. Calculate the horizontal asymptote:
- The horizontal asymptote is given by [tex]\( \frac{\text{leading coefficient of the numerator}}{\text{leading coefficient of the denominator}} \)[/tex].
- Therefore, the horizontal asymptote is [tex]\( y = \frac{3}{1} = 3 \)[/tex].
So, the horizontal asymptote for the function [tex]\( y = \frac{3x + 27}{x - 9} \)[/tex] is [tex]\( y = 3 \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.