Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
[tex]\angle {\rm APB} = 90^{\circ}[/tex] as long as point [tex]P[/tex] is on the circle of radius [tex]r = 7[/tex] centered at [tex](0,\, 0)[/tex] (i.e., the position of point [tex]P[/tex] [tex](x,\, y)[/tex] should satisfy [tex]x^{2} + y^{2} = 7^{2}[/tex].)
Step-by-step explanation:
By Thale's Theorem, if a point [tex]{\rm P}[/tex] is on a circle, endpoints [tex]{\rm A}[/tex] and [tex]{\rm B}[/tex] of any diameter [tex]{\rm AB}[/tex] of that circle would subtend a right angle with point [tex]{\rm P}[/tex], provided that [tex]{\rm P}[/tex] isn't on that diameter. In other words, as long as [tex]{\rm P}[/tex] isn't on the diameter [tex]{\rm AB}[/tex] of that circle, [tex]\angle {\rm APB} = 90^{\circ}[/tex].
The converse of this theorem is also true: if the two endpoints [tex]{\rm A}[/tex] and [tex]{\rm B}[/tex] of a line segment [tex]{\rm AB}[/tex] subtends a right angle with a third point [tex]{\rm P}[/tex] (i.e., [tex]\angle {\rm APB} = 90^{\circ}[/tex],) then point [tex]{\rm P}[/tex] must be on the (unique) circle where [tex]{\rm AB}[/tex] is a diameter.
This question is asking for the possible positions of point [tex]{\rm P}[/tex] such that the angle [tex]\angle {\rm APB}[/tex] would be a right angle ([tex]90^{\circ}[/tex].) Observe that this requirement of this question resembles the premise of the converse of Thale's Theorem. Hence, by the converse of Thale's Theorem, point [tex]{\rm P}[/tex] must be on the circle where segment [tex]{\rm AB}[/tex] is a diameter.
The center of the circle where segment [tex]{\rm AB}[/tex] is a diameter is the same as the center of segment [tex]{\rm AB}[/tex]. Given that [tex]{\rm A}[/tex] is at [tex](-7,\, 0)[/tex] while [tex]{\rm B}[/tex] is at [tex](7,\, 0)[/tex], the center of that circle would be [tex](0,\, 0)[/tex]. The radius of the circle is one-half the length of its diameter: [tex]r = 7[/tex].
Hence, the equation for this circle would be:
[tex](x - 0)^{2} + (y - 0)^{2} = 7^{2}[/tex].
Simplify to obtain:
[tex]x^{2} + y^{2} = 7^{2}[/tex].
In other words, [tex]{\rm P}[/tex] is on the circle [tex]x^{2} + y^{2} = 7^{2}[/tex] (where [tex]{\rm AB}[/tex] is a diameter) if and only if [tex]\angle {\rm APB} = 90^{\circ}[/tex]:
- [tex]\text{P is on the circle} \implies \angle {\rm APB} = 90^{\circ}[/tex] is from Thale's Theorem.
- [tex]\angle {\rm APB} = 90^{\circ} \implies \text{P is on the circle}[/tex] is from the converse of Thale's Theorem.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.