Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure! Let's solve the quadratic equation [tex]\(6x^2 + 36x + 54 = 0\)[/tex] step by step.
1. Identify the coefficients:
The general form of a quadratic equation is [tex]\(ax^2 + bx + c = 0\)[/tex]. In our equation, the coefficients are:
[tex]\[ a = 6, \quad b = 36, \quad c = 54 \][/tex]
2. Calculate the discriminant:
The discriminant [tex]\(\Delta\)[/tex] of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex], we get:
[tex]\[ \Delta = 36^2 - 4 \cdot 6 \cdot 54 = 1296 - 1296 = 0 \][/tex]
3. Solve using the quadratic formula:
The solutions for the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] are given by:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Since the discriminant [tex]\(\Delta\)[/tex] is 0, we have:
[tex]\[ x = \frac{-b \pm \sqrt{0}}{2a} = \frac{-b}{2a} \][/tex]
4. Calculate the solution:
Substitute [tex]\(a = 6\)[/tex] and [tex]\(b = 36\)[/tex] into the formula:
[tex]\[ x = \frac{-36}{2 \cdot 6} = \frac{-36}{12} = -3 \][/tex]
Since the discriminant is 0, there is only one unique solution for this quadratic equation. Therefore, the value of [tex]\(x\)[/tex] is:
[tex]\[ x = -3 \][/tex]
1. Identify the coefficients:
The general form of a quadratic equation is [tex]\(ax^2 + bx + c = 0\)[/tex]. In our equation, the coefficients are:
[tex]\[ a = 6, \quad b = 36, \quad c = 54 \][/tex]
2. Calculate the discriminant:
The discriminant [tex]\(\Delta\)[/tex] of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex], we get:
[tex]\[ \Delta = 36^2 - 4 \cdot 6 \cdot 54 = 1296 - 1296 = 0 \][/tex]
3. Solve using the quadratic formula:
The solutions for the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] are given by:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Since the discriminant [tex]\(\Delta\)[/tex] is 0, we have:
[tex]\[ x = \frac{-b \pm \sqrt{0}}{2a} = \frac{-b}{2a} \][/tex]
4. Calculate the solution:
Substitute [tex]\(a = 6\)[/tex] and [tex]\(b = 36\)[/tex] into the formula:
[tex]\[ x = \frac{-36}{2 \cdot 6} = \frac{-36}{12} = -3 \][/tex]
Since the discriminant is 0, there is only one unique solution for this quadratic equation. Therefore, the value of [tex]\(x\)[/tex] is:
[tex]\[ x = -3 \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.