At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To rewrite the quadratic function [tex]\( f(x) = 7x^2 + 42x \)[/tex] in vertex form, we need to complete the square. The vertex form of a quadratic function is [tex]\( f(x) = a(x - h)^2 + k \)[/tex], where [tex]\((h, k)\)[/tex] is the vertex of the parabola.
Let's follow these steps carefully:
1. Factor out the coefficient of [tex]\( x^2 \)[/tex] from the first two terms:
[tex]\[ f(x) = 7(x^2 + 6x) \][/tex]
2. Complete the square inside the parenthesis:
- Take the coefficient of [tex]\( x \)[/tex], which is 6, and halve it to get 3.
- Square 3 to get [tex]\( 3^2 = 9 \)[/tex].
So, we can rewrite the trinomial by adding and subtracting [tex]\( 9 \)[/tex] inside the parenthesis:
[tex]\[ f(x) = 7(x^2 + 6x + 9 - 9) \][/tex]
[tex]\[ f(x) = 7((x^2 + 6x + 9) - 9) \][/tex]
[tex]\[ f(x) = 7((x + 3)^2 - 9) \][/tex]
3. Distribute the 7 across the terms inside the parenthesis:
[tex]\[ f(x) = 7(x + 3)^2 - 7 \cdot 9 \][/tex]
[tex]\[ f(x) = 7(x + 3)^2 - 63 \][/tex]
Therefore, the function [tex]\( f(x) = 7x^2 + 42x \)[/tex] written in vertex form is:
[tex]\[ f(x) = 7(x + 3)^2 - 63 \][/tex]
Hence, the correct answer is:
[tex]\[ f(x) = 7(x + 3)^2 - 63 \][/tex]
So, the correct choice is:
[tex]\[ \boxed{f(x)=7(x+3)^2-63} \][/tex]
Let's follow these steps carefully:
1. Factor out the coefficient of [tex]\( x^2 \)[/tex] from the first two terms:
[tex]\[ f(x) = 7(x^2 + 6x) \][/tex]
2. Complete the square inside the parenthesis:
- Take the coefficient of [tex]\( x \)[/tex], which is 6, and halve it to get 3.
- Square 3 to get [tex]\( 3^2 = 9 \)[/tex].
So, we can rewrite the trinomial by adding and subtracting [tex]\( 9 \)[/tex] inside the parenthesis:
[tex]\[ f(x) = 7(x^2 + 6x + 9 - 9) \][/tex]
[tex]\[ f(x) = 7((x^2 + 6x + 9) - 9) \][/tex]
[tex]\[ f(x) = 7((x + 3)^2 - 9) \][/tex]
3. Distribute the 7 across the terms inside the parenthesis:
[tex]\[ f(x) = 7(x + 3)^2 - 7 \cdot 9 \][/tex]
[tex]\[ f(x) = 7(x + 3)^2 - 63 \][/tex]
Therefore, the function [tex]\( f(x) = 7x^2 + 42x \)[/tex] written in vertex form is:
[tex]\[ f(x) = 7(x + 3)^2 - 63 \][/tex]
Hence, the correct answer is:
[tex]\[ f(x) = 7(x + 3)^2 - 63 \][/tex]
So, the correct choice is:
[tex]\[ \boxed{f(x)=7(x+3)^2-63} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.