Answered

Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Luis and Aisha conducted an experiment. They exerted different forces on four objects. Their results are shown in the table.

\begin{tabular}{|c|c|c|}
\hline
Object & Mass & Force [tex]$(N)$[/tex] \\
\hline
1 & [tex]$10 \, kg$[/tex] & [tex]$4 \, N$[/tex] \\
\hline
2 & [tex]$100 \, g$[/tex] & [tex]$20 \, N$[/tex] \\
\hline
3 & [tex]$10 \, g$[/tex] & [tex]$4 \, N$[/tex] \\
\hline
4 & [tex]$1 \, kg$[/tex] & [tex]$20 \, N$[/tex] \\
\hline
\end{tabular}

Based on the data, which object has the greatest acceleration?

A. Object 1
B. Object 2
C. Object 3
D. Object 4

Sagot :

To determine which object has the greatest acceleration, we will use Newton's second law of motion, which states that [tex]\( a = \frac{F}{m} \)[/tex], where [tex]\( a \)[/tex] is acceleration, [tex]\( F \)[/tex] is force, and [tex]\( m \)[/tex] is mass.

Let's calculate the acceleration for each object step by step:

1. Object 1:
- Mass ( [tex]\(m_1\)[/tex] ): [tex]\(10 \, \text{kg}\)[/tex]
- Force ( [tex]\(F_1\)[/tex] ): [tex]\(4 \, \text{N}\)[/tex]
- Acceleration ( [tex]\(a_1\)[/tex] ): [tex]\[ a_1 = \frac{F_1}{m_1} = \frac{4 \, \text{N}}{10 \, \text{kg}} = 0.4 \, \text{m/s}^2 \][/tex]

2. Object 2:
- Mass ( [tex]\(m_2\)[/tex] ): [tex]\(100 \, \text{g} = 0.1 \, \text{kg}\)[/tex] (converted to kg)
- Force ( [tex]\(F_2\)[/tex] ): [tex]\(20 \, \text{N}\)[/tex]
- Acceleration ( [tex]\(a_2\)[/tex] ): [tex]\[ a_2 = \frac{F_2}{m_2} = \frac{20 \, \text{N}}{0.1 \, \text{kg}} = 200 \, \text{m/s}^2 \][/tex]

3. Object 3:
- Mass ( [tex]\(m_3\)[/tex] ): [tex]\(10 \, \text{g} = 0.01 \, \text{kg}\)[/tex] (converted to kg)
- Force ( [tex]\(F_3\)[/tex] ): [tex]\(4 \, \text{N}\)[/tex]
- Acceleration ( [tex]\(a_3\)[/tex] ): [tex]\[ a_3 = \frac{F_3}{m_3} = \frac{4 \, \text{N}}{0.01 \, \text{kg}} = 400 \, \text{m/s}^2 \][/tex]

4. Object 4:
- Mass ( [tex]\(m_4\)[/tex] ): [tex]\(1 \, \text{kg}\)[/tex]
- Force ( [tex]\(F_4\)[/tex] ): [tex]\(20 \, \text{N}\)[/tex]
- Acceleration ( [tex]\(a_4\)[/tex] ): [tex]\[ a_4 = \frac{F_4}{m_4} = \frac{20 \, \text{N}}{1 \, \text{kg}} = 20 \, \text{m/s}^2 \][/tex]

Now, we compare the accelerations we've calculated:
- Object 1: [tex]\( 0.4 \, \text{m/s}^2 \)[/tex]
- Object 2: [tex]\( 200 \, \text{m/s}^2 \)[/tex]
- Object 3: [tex]\( 400 \, \text{m/s}^2 \)[/tex]
- Object 4: [tex]\( 20 \, \text{m/s}^2 \)[/tex]

From these calculations, Object 3 has the greatest acceleration, which is [tex]\( 400 \, \text{m/s}^2 \)[/tex].

Therefore, based on the data, Object 3 has the greatest acceleration.