Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Calculate [tex]\( x \)[/tex].
[tex]\[
\begin{array}{l}
3x^2 + 18x + 27 = 0 \\
x = \square
\end{array}
\][/tex]


Sagot :

To solve the quadratic equation [tex]\(3x^2 + 18x + 27 = 0\)[/tex], we follow these steps:

1. Identify the coefficients:
- [tex]\(a = 3\)[/tex]
- [tex]\(b = 18\)[/tex]
- [tex]\(c = 27\)[/tex]

2. Calculate the discriminant:
The discriminant [tex]\(\Delta\)[/tex] of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ \Delta = 18^2 - 4 \cdot 3 \cdot 27 \][/tex]
[tex]\[ \Delta = 324 - 324 \][/tex]
[tex]\[ \Delta = 0 \][/tex]

3. Interpret the discriminant:
The discriminant being zero ([tex]\(\Delta = 0\)[/tex]) indicates that the quadratic equation has exactly one real solution, also known as a repeated root.

4. Use the quadratic formula:
The solutions of the quadratic equation are given by:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Since [tex]\(\Delta = 0\)[/tex], this simplifies to:
[tex]\[ x = \frac{-b}{2a} \][/tex]

5. Calculate the solution:
Substituting the values [tex]\(b = 18\)[/tex] and [tex]\(a = 3\)[/tex]:
[tex]\[ x = \frac{-18}{2 \cdot 3} \][/tex]
[tex]\[ x = \frac{-18}{6} \][/tex]
[tex]\[ x = -3 \][/tex]

Therefore, the solution to the equation [tex]\(3x^2 + 18x + 27 = 0\)[/tex] is:
[tex]\[ x = -3 \][/tex]
Since the discriminant is zero, this means we have a repeated root, so:
[tex]\[ x_1 = x_2 = -3 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.