Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To describe the transformation from the parent cubic function [tex]\( y = x^3 \)[/tex] to the function [tex]\( y = -x + 3 \)[/tex], we need to analyze the changes applied to the graph of the original function.
1. Reflection over the y-axis: In the original cubic function [tex]\( y = x^3 \)[/tex], we get a reflection over the y-axis when we negate the variable [tex]\( x \)[/tex]. Thus, if we consider [tex]\( y = (-x)^3 \)[/tex], it would still be [tex]\( y = -x^3 \)[/tex]. In the given function [tex]\( y = -x + 3 \)[/tex], the presence of [tex]\( -x \)[/tex] indicates a reflection over the y-axis.
2. Vertical Shift: Next, let's look at the constant term in the transformed function [tex]\( y = -x + 3 \)[/tex]. This [tex]\( +3 \)[/tex] indicates that the entire graph of the function has been shifted vertically. A positive constant added to the function implies an upward shift. Therefore, the graph is shifted up by 3 units.
Based on this analysis, we can select the correct transformations as follows:
- Reflection over the y-axis
- Shift up 3 units
Thus, the correct options are:
1. Reflection over the y-axis
2. Shift up 3 units
1. Reflection over the y-axis: In the original cubic function [tex]\( y = x^3 \)[/tex], we get a reflection over the y-axis when we negate the variable [tex]\( x \)[/tex]. Thus, if we consider [tex]\( y = (-x)^3 \)[/tex], it would still be [tex]\( y = -x^3 \)[/tex]. In the given function [tex]\( y = -x + 3 \)[/tex], the presence of [tex]\( -x \)[/tex] indicates a reflection over the y-axis.
2. Vertical Shift: Next, let's look at the constant term in the transformed function [tex]\( y = -x + 3 \)[/tex]. This [tex]\( +3 \)[/tex] indicates that the entire graph of the function has been shifted vertically. A positive constant added to the function implies an upward shift. Therefore, the graph is shifted up by 3 units.
Based on this analysis, we can select the correct transformations as follows:
- Reflection over the y-axis
- Shift up 3 units
Thus, the correct options are:
1. Reflection over the y-axis
2. Shift up 3 units
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.