Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

For what value of [tex]\( k \)[/tex] will the point [tex]\( (2,1) \)[/tex] lie on the locus whose equation is [tex]\( x^2 + y^2 - 4x + 3y + k = 13 \)[/tex]?

Sagot :

To determine the value of [tex]\( k \)[/tex] such that the point [tex]\((2, 1)\)[/tex] lies on the locus described by the equation [tex]\( x^2 + y^2 - 4x + 3y + k = 13 \)[/tex], follow these steps:

1. Substitute the coordinates [tex]\( (2, 1) \)[/tex] into the equation:
Given [tex]\( x = 2 \)[/tex] and [tex]\( y = 1 \)[/tex], substitute these values into the equation:

[tex]\[ x^2 + y^2 - 4x + 3y + k = 13 \][/tex]

will become:

[tex]\[ (2)^2 + (1)^2 - 4(2) + 3(1) + k = 13 \][/tex]

2. Simplify the equation:

- Calculate [tex]\( (2)^2 \)[/tex]:
[tex]\[ (2)^2 = 4 \][/tex]

- Calculate [tex]\( (1)^2 \)[/tex]:
[tex]\[ (1)^2 = 1 \][/tex]

- Calculate [tex]\(-4(2)\)[/tex]:
[tex]\[ -4(2) = -8 \][/tex]

- Calculate [tex]\( 3(1) \)[/tex]:
[tex]\[ 3(1) = 3 \][/tex]

Substitute these values back into the equation:

[tex]\[ 4 + 1 - 8 + 3 + k = 13 \][/tex]

3. Combine like terms:

First, combine the numeric values:

[tex]\[ 4 + 1 = 5 \][/tex]
Then:

[tex]\[ 5 - 8 = -3 \][/tex]
Finally:

[tex]\[ -3 + 3 = 0 \][/tex]

This leaves us with:

[tex]\[ 0 + k = 13 \][/tex]

4. Isolate [tex]\( k \)[/tex]:

[tex]\[ k = 13 \][/tex]

Therefore, the value of [tex]\( k \)[/tex] that ensures the point [tex]\((2, 1)\)[/tex] lies on the locus given by the equation [tex]\( x^2 + y^2 - 4x + 3y + k = 13 \)[/tex] is [tex]\( k = 13 \)[/tex].