Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

A decagon has 10 sides. One angle of a regular decagon measures [tex][tex]$(8w + 17)^\circ$[/tex][/tex]. Determine the value of [tex]w[/tex]. Round to the nearest whole number.

A. [tex]w = 144[/tex]
B. [tex]w = 23[/tex]
C. [tex]w = 16[/tex]
D. [tex]w = 8[/tex]


Sagot :

To determine the value of [tex]\(w\)[/tex] given that one angle of a regular decagon measures [tex]\((8w + 17)^\circ\)[/tex], let's follow the step-by-step process:

1. Calculate the internal angle of a regular decagon:
- A decagon has 10 sides.
- The formula for the internal angle of a regular [tex]\(n\)[/tex]-sided polygon is [tex]\(\frac{(n - 2) \times 180}{n}\)[/tex].

2. Apply the formula to the decagon:
[tex]\[ \text{Internal angle} = \frac{(10 - 2) \times 180}{10} = \frac{8 \times 180}{10} = \frac{1440}{10} = 144^\circ \][/tex]

3. Set up the equation with the given internal angle:
- The internal angle [tex]\(144^\circ\)[/tex] is given by [tex]\((8w + 17)^\circ\)[/tex].
- We set up the equation:
[tex]\[ 8w + 17 = 144 \][/tex]

4. Solve for [tex]\(w\)[/tex]:
[tex]\[ 8w + 17 = 144 \][/tex]
- Subtract 17 from both sides:
[tex]\[ 8w = 144 - 17 \][/tex]
[tex]\[ 8w = 127 \][/tex]
- Divide both sides by 8 to solve for [tex]\(w\)[/tex]:
[tex]\[ w = \frac{127}{8} \approx 15.875 \][/tex]

5. Round to the nearest whole number:
[tex]\[ 15.875 \approx 16 \][/tex]

Therefore, the value of [tex]\(w\)[/tex] that makes one angle of a regular decagon measure [tex]\((8w + 17)^\circ\)[/tex] is [tex]\( \boxed{16} \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.