Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Can a triangle be formed with side lengths 6, 9, and 12? Explain.

A. No, because [tex]12 - 9 \ \textless \ 6[/tex]

B. Yes, because [tex]6 + 9 \ \textgreater \ 12[/tex]

C. Yes, because [tex]12 - 9 \ \textless \ 6[/tex]

D. No, because [tex]6 + 9 \ \textgreater \ 12[/tex]


Sagot :

To determine whether a triangle can be formed using side lengths 6, 9, and 12, we must apply the triangle inequality theorem. This theorem states that for three side lengths to form a triangle, the sum of any two sides must be greater than the third side.

Let's check each condition:

1. First condition: The sum of the first side and the second side must be greater than the third side:
[tex]\[ 6 + 9 > 12 \][/tex]
Simplifying,
[tex]\[ 15 > 12 \][/tex]
This condition is true.

2. Second condition: The sum of the first side and the third side must be greater than the second side:
[tex]\[ 6 + 12 > 9 \][/tex]
Simplifying,
[tex]\[ 18 > 9 \][/tex]
This condition is true.

3. Third condition: The sum of the second side and the third side must be greater than the first side:
[tex]\[ 9 + 12 > 6 \][/tex]
Simplifying,
[tex]\[ 21 > 6 \][/tex]
This condition is true.

Since all three conditions of the triangle inequality theorem are satisfied, we can conclude that a triangle can be formed with side lengths 6, 9, and 12.

Therefore, the correct answer is:
Yes, because [tex]\(6 + 9 > 12\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.