Answered

Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

29. The combustion of glucose is represented by the following balanced equation:

[tex]\[C_6H_{12}O_6 + 6O_2 \rightarrow 6H_2O + 6CO_2\][/tex]

The reaction uses 1 gram of both [tex]\(C_6H_{12}O_6\)[/tex] and [tex]\(O_2\)[/tex]. What is the percent yield if 0.45 g of [tex]\(H_2O\)[/tex] is produced?

A. 0.31%
B. 100%
C. 0.558%
D. 80%

Sagot :

To determine the percent yield of water produced in the given reaction, we need to follow a series of steps:

1. Identify the molar masses of the involved compounds:
- Molar mass of glucose ([tex]\( C_6H_{12}O_6 \)[/tex]) is 180.16 g/mol.
- Molar mass of oxygen ([tex]\( O_2 \)[/tex]) is 32.00 g/mol.
- Molar mass of water ([tex]\( H_2O \)[/tex]) is 18.015 g/mol.

2. Calculate the moles of glucose used:
- Given mass of glucose = 1 gram.
- Moles of glucose = [tex]\(\frac{\text{mass}}{\text{molar mass}}\)[/tex].
- Moles of glucose = [tex]\(\frac{1 \text{ g}}{180.16 \text{ g/mol}} \approx 0.005550621669626998 \text{ mol}\)[/tex].

3. Calculate the moles of oxygen used:
- Given mass of oxygen = 1 gram.
- Moles of oxygen = [tex]\(\frac{\text{mass}}{\text{molar mass}}\)[/tex].
- Moles of oxygen = [tex]\(\frac{1 \text{ g}}{32.00 \text{ g/mol}} = 0.03125 \text{ mol}\)[/tex].

4. Determine the theoretical yield of water:
- According to the balanced chemical equation: [tex]\( C_6H_{12}O_6 + 6O_2 \rightarrow 6H_2O + 6CO_2 \)[/tex], 1 mole of glucose reacts with 6 moles of oxygen to produce 6 moles of water.
- The limiting reactant is glucose because it has fewer moles available.
- From the stoichiometry: 1 mole of glucose produces 6 moles of water.
- Theoretical moles of water = moles of glucose [tex]\(\times\)[/tex] 6.
- Theoretical moles of water = [tex]\( 0.005550621669626998 \text{ mol} \times 6 \approx 0.03330373001776199 \text{ mol}\)[/tex].

5. Calculate the theoretical mass of water produced:
- Mass = moles [tex]\(\times\)[/tex] molar mass.
- Theoretical mass of water = [tex]\(0.03330373001776199 \text{ mol} \times 18.015 \text{ g/mol} \approx 0.5999666962699822 \text{ g}\)[/tex].

6. Calculate the percent yield:
- Actual mass of water produced = 0.45 g.
- Percent yield = [tex]\(\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\)[/tex].
- Percent yield = [tex]\(\frac{0.45 \text{ g}}{0.5999666962699822 \text{ g}} \times 100 \approx 75.00416319733556\%\)[/tex].

Therefore, the percent yield of water in the reaction is approximately [tex]\( 75.00416319733556\% \)[/tex], which matches the closest answer:

d. [tex]\( 80 \% \)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.