At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Factor completely: [tex]5a^2 + b[/tex]

A. Prime
B. [tex]a(5a + b)[/tex]
C. [tex]b(5a^2)[/tex]
D. [tex]ab(5a + 1)[/tex]


Sagot :

To solve the problem of factoring the expression [tex]\( 5a^2 + b \)[/tex] completely, let's analyze each of the proposed factorizations step-by-step.

1. Prime

Stating that an expression is "Prime" means that it cannot be factored further using integer coefficients. This is an option we keep in mind as we test the other factorizations.

2. [tex]\(a(5a + b)\)[/tex]

Let's check this:
- If we expand [tex]\( a(5a + b) \)[/tex], we get:
[tex]\[ a(5a + b) = 5a^2 + ab \][/tex]
- This result does not match our original expression [tex]\( 5a^2 + b \)[/tex], as we have an extra [tex]\( ab \)[/tex] term, making this incorrect.

3. [tex]\(b(5a^2)\)[/tex]

Let's analyze this:
- If we expand [tex]\( b(5a^2) \)[/tex], we get:
[tex]\[ b(5a^2) = 5a^2b \][/tex]
- Again, this result does not match our original expression [tex]\( 5a^2 + b \)[/tex], as the [tex]\( b \)[/tex] term is incorrectly multiplied, making this option incorrect.

4. [tex]\(ab(5a + 1)\)[/tex]

Let's test this option:
- If we expand [tex]\( ab(5a + 1) \)[/tex], we get:
[tex]\[ ab(5a + 1) = 5a^2b + ab \][/tex]
- This result does not match our original expression [tex]\( 5a^2 + b \)[/tex], as it introduces additional terms involving [tex]\( ab \)[/tex], making this option incorrect.

Given that none of the proposed factorizations correctly factorize [tex]\( 5a^2 + b \)[/tex], and based on the information that the expression does not factor further into simpler expressions with integer coefficients, we conclude that:

The expression [tex]\( 5a^2 + b \)[/tex] is already in its simplest form and cannot be factored further. It is, therefore, prime.

So, the correct answer is:

[tex]\[ \boxed{\text{Prime}} \][/tex]
A is the correct answer to this factor