Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the new temperature of the aluminum after transferring 1.9 kJ of heat, we can follow these steps:
1. Convert the heat transfer from kJ to J:
- The given heat transfer is 1.9 kJ.
- Since 1 kJ = 1000 J, we multiply:
[tex]\[ 1.9 \, \text{kJ} \times 1000 \, \left(\frac{\text{J}}{\text{kJ}}\right) = 1900 \, \text{J} \][/tex]
2. Write down the formula for heat transfer:
- The formula for heat transfer is given by:
[tex]\[ Q = m \cdot c \cdot \Delta T \][/tex]
where:
- [tex]\( Q \)[/tex] is the heat transferred (in Joules),
- [tex]\( m \)[/tex] is the mass (in grams),
- [tex]\( c \)[/tex] is the specific heat capacity (in J/g°C),
- [tex]\( \Delta T \)[/tex] is the change in temperature (in °C).
3. Rearrange the formula to solve for the change in temperature, [tex]\( \Delta T \)[/tex]:
[tex]\[ \Delta T = \frac{Q}{m \cdot c} \][/tex]
4. Substitute the known values into the formula:
- [tex]\( Q = 1900 \, \text{J} \)[/tex]
- [tex]\( m = 96 \, \text{g} \)[/tex]
- [tex]\( c = 0.897 \, \text{J/g°C} \)[/tex]
[tex]\[ \Delta T = \frac{1900 \, \text{J}}{96 \, \text{g} \times 0.897 \, \text{J/g°C}} \][/tex]
[tex]\[ \Delta T \approx \frac{1900}{86.112} \][/tex]
[tex]\[ \Delta T \approx 22.06^{\circ}C \][/tex]
5. Determine the new temperature:
- The initial temperature of the aluminum is [tex]\( 113^{\circ}C \)[/tex].
- Add the change in temperature to the initial temperature to find the new temperature:
[tex]\[ \text{New temperature} = 113^{\circ}C + 22.06^{\circ}C \approx 135.06^{\circ}C \][/tex]
Considering the given options, the closest answer is:
A. [tex]\( 135^{\circ}C \)[/tex]
1. Convert the heat transfer from kJ to J:
- The given heat transfer is 1.9 kJ.
- Since 1 kJ = 1000 J, we multiply:
[tex]\[ 1.9 \, \text{kJ} \times 1000 \, \left(\frac{\text{J}}{\text{kJ}}\right) = 1900 \, \text{J} \][/tex]
2. Write down the formula for heat transfer:
- The formula for heat transfer is given by:
[tex]\[ Q = m \cdot c \cdot \Delta T \][/tex]
where:
- [tex]\( Q \)[/tex] is the heat transferred (in Joules),
- [tex]\( m \)[/tex] is the mass (in grams),
- [tex]\( c \)[/tex] is the specific heat capacity (in J/g°C),
- [tex]\( \Delta T \)[/tex] is the change in temperature (in °C).
3. Rearrange the formula to solve for the change in temperature, [tex]\( \Delta T \)[/tex]:
[tex]\[ \Delta T = \frac{Q}{m \cdot c} \][/tex]
4. Substitute the known values into the formula:
- [tex]\( Q = 1900 \, \text{J} \)[/tex]
- [tex]\( m = 96 \, \text{g} \)[/tex]
- [tex]\( c = 0.897 \, \text{J/g°C} \)[/tex]
[tex]\[ \Delta T = \frac{1900 \, \text{J}}{96 \, \text{g} \times 0.897 \, \text{J/g°C}} \][/tex]
[tex]\[ \Delta T \approx \frac{1900}{86.112} \][/tex]
[tex]\[ \Delta T \approx 22.06^{\circ}C \][/tex]
5. Determine the new temperature:
- The initial temperature of the aluminum is [tex]\( 113^{\circ}C \)[/tex].
- Add the change in temperature to the initial temperature to find the new temperature:
[tex]\[ \text{New temperature} = 113^{\circ}C + 22.06^{\circ}C \approx 135.06^{\circ}C \][/tex]
Considering the given options, the closest answer is:
A. [tex]\( 135^{\circ}C \)[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.