Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Q.3 A stone tied to the end of a string [tex]$80 \, \text{cm}$[/tex] long is whirled in a horizontal circle with constant speed. If the stone makes 14 revolutions in [tex]$25 \, \text{sec}$[/tex], what is the magnitude of the acceleration of the stone?

A. [tex]$680 \, \text{cm} / \text{s}^2$[/tex]
B. [tex]$860 \, \text{cm} / \text{s}^2$[/tex]
C. [tex]$720 \, \text{cm} / \text{s}^2$[/tex]
D. [tex]$990 \, \text{cm} / \text{s}^2$[/tex]


Sagot :

To solve this problem, we need to calculate the centripetal acceleration of the stone. We'll dissect the problem step-by-step:

1. Given Data:
- Length of the string ([tex]\( r \)[/tex]): [tex]\(80 \, \text{cm} = 0.8 \, \text{m}\)[/tex]
- Number of revolutions ([tex]\( N \)[/tex]): [tex]\(14\)[/tex] revolutions
- Time ([tex]\( t \)[/tex]): [tex]\(25 \, \text{seconds}\)[/tex]

2. Calculate the Period of One Revolution:
The period ([tex]\( T \)[/tex]) is the time it takes to complete one revolution. It is given by:
[tex]\[ T = \frac{t}{N} = \frac{25 \, \text{seconds}}{14} \approx 1.7857 \, \text{seconds} \][/tex]

3. Calculate the Frequency:
Frequency ([tex]\( f \)[/tex]) is the number of revolutions per second:
[tex]\[ f = \frac{N}{t} = \frac{14}{25} = 0.56 \, \text{revolutions/second} \][/tex]

4. Calculate the Angular Velocity:
Angular velocity ([tex]\( \omega \)[/tex]) in radians per second can be found using the formula:
[tex]\[ \omega = 2 \pi f \][/tex]
Substituting the frequency:
[tex]\[ \omega = 2 \pi \times 0.56 \approx 3.5186 \, \text{radians/second} \][/tex]

5. Calculate the Magnitude of Centripetal Acceleration:
The centripetal acceleration ([tex]\( a \)[/tex]) can be calculated using the formula:
[tex]\[ a = \omega^2 \times r \][/tex]
Substituting the known values:
[tex]\[ a = (3.5186)^2 \times 0.8 \, \text{m} \][/tex]
Simplifying the calculation:
[tex]\[ a \approx 12.378 \times 0.8 \approx 9.904 \, \text{m/s}^2 \][/tex]

Since [tex]\(1 \, \text{m/s}^2 = 100 \, \text{cm/s}^2\)[/tex], we convert the acceleration to cm/s²:
[tex]\[ a \approx 9.904 \, \text{m/s}^2 \times 100 \approx 990.4 \, \text{cm/s}^2 \][/tex]

Thus, the magnitude of the acceleration of the stone is approximately [tex]\( 990 \, \text{cm/s}^2 \)[/tex], which matches option D in the question.