Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the equation [tex]\( x^4 - 5x^2 - 14 = 0 \)[/tex] using factoring, let's proceed step-by-step.
1. Introduce a Substitution: Let [tex]\( y = x^2 \)[/tex]. Then the original equation becomes
[tex]\[ y^2 - 5y - 14 = 0. \][/tex]
This is a quadratic equation in terms of [tex]\( y \)[/tex].
2. Solve the Quadratic Equation: We need to solve
[tex]\[ y^2 - 5y - 14 = 0. \][/tex]
To factor this quadratic equation, look for two numbers that multiply to [tex]\(-14\)[/tex] and add to [tex]\(-5\)[/tex]. These numbers are [tex]\(-7\)[/tex] and [tex]\(2\)[/tex]. Thus, the quadratic factors as
[tex]\[ (y - 7)(y + 2) = 0. \][/tex]
3. Solve for [tex]\( y \)[/tex]:
[tex]\[ y - 7 = 0 \quad \text{or} \quad y + 2 = 0 \][/tex]
So,
[tex]\[ y = 7 \quad \text{or} \quad y = -2. \][/tex]
4. Back-Substitute [tex]\( y = x^2 \)[/tex]:
[tex]\[ x^2 = 7 \quad \text{or} \quad x^2 = -2. \][/tex]
5. Solve for [tex]\( x \)[/tex]:
- If [tex]\( x^2 = 7 \)[/tex],
[tex]\[ x = \pm \sqrt{7}. \][/tex]
- If [tex]\( x^2 = -2 \)[/tex],
[tex]\[ x = \pm \sqrt{-2} = \pm i \sqrt{2}. \][/tex]
Thus, the solutions to the original equation [tex]\( x^4 - 5x^2 - 14 = 0 \)[/tex] are:
[tex]\[ x = \pm \sqrt{7} \quad \text{and} \quad x = \pm i \sqrt{2}. \][/tex]
Therefore, the correct answer is:
[tex]\[ x = \pm \sqrt{7} \quad \text{and} \quad x = \pm i \sqrt{2}. \][/tex]
1. Introduce a Substitution: Let [tex]\( y = x^2 \)[/tex]. Then the original equation becomes
[tex]\[ y^2 - 5y - 14 = 0. \][/tex]
This is a quadratic equation in terms of [tex]\( y \)[/tex].
2. Solve the Quadratic Equation: We need to solve
[tex]\[ y^2 - 5y - 14 = 0. \][/tex]
To factor this quadratic equation, look for two numbers that multiply to [tex]\(-14\)[/tex] and add to [tex]\(-5\)[/tex]. These numbers are [tex]\(-7\)[/tex] and [tex]\(2\)[/tex]. Thus, the quadratic factors as
[tex]\[ (y - 7)(y + 2) = 0. \][/tex]
3. Solve for [tex]\( y \)[/tex]:
[tex]\[ y - 7 = 0 \quad \text{or} \quad y + 2 = 0 \][/tex]
So,
[tex]\[ y = 7 \quad \text{or} \quad y = -2. \][/tex]
4. Back-Substitute [tex]\( y = x^2 \)[/tex]:
[tex]\[ x^2 = 7 \quad \text{or} \quad x^2 = -2. \][/tex]
5. Solve for [tex]\( x \)[/tex]:
- If [tex]\( x^2 = 7 \)[/tex],
[tex]\[ x = \pm \sqrt{7}. \][/tex]
- If [tex]\( x^2 = -2 \)[/tex],
[tex]\[ x = \pm \sqrt{-2} = \pm i \sqrt{2}. \][/tex]
Thus, the solutions to the original equation [tex]\( x^4 - 5x^2 - 14 = 0 \)[/tex] are:
[tex]\[ x = \pm \sqrt{7} \quad \text{and} \quad x = \pm i \sqrt{2}. \][/tex]
Therefore, the correct answer is:
[tex]\[ x = \pm \sqrt{7} \quad \text{and} \quad x = \pm i \sqrt{2}. \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.