Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the system of equations
[tex]\[ \begin{array}{l} 3x + 4y = 5 \\ 6x - y = 1 \end{array} \][/tex]
we can use the method of determinants, also known as Cramer's Rule. Here are the steps to find the solution [tex]\( (x, y) \)[/tex]:
### Step 1: Set up the equations
We start by setting up the two linear equations:
1. [tex]\( 3x + 4y = 5 \)[/tex]
2. [tex]\( 6x - y = 1 \)[/tex]
### Step 2: Formulate the coefficient matrix and the constant matrix
We identify the coefficients from the given equations:
For the equation [tex]\( 3x + 4y = 5 \)[/tex]:
- Coefficient of [tex]\( x \)[/tex] (a₁) = 3
- Coefficient of [tex]\( y \)[/tex] (b₁) = 4
- Constant term (c₁) = 5
For the equation [tex]\( 6x - y = 1 \)[/tex]:
- Coefficient of [tex]\( x \)[/tex] (a₂) = 6
- Coefficient of [tex]\( y \)[/tex] (b₂) = -1
- Constant term (c₂) = 1
### Step 3: Calculate the determinant of the coefficient matrix ([tex]\( \Delta \)[/tex])
The determinant [tex]\(\Delta\)[/tex] of the coefficient matrix is given by:
[tex]\[ \Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 \][/tex]
Substituting the values:
[tex]\[ \Delta = (3 \cdot -1) - (6 \cdot 4) = -3 - 24 = -27 \][/tex]
### Step 4: Calculate the determinant for [tex]\( x \)[/tex] ([tex]\( \Delta_x \)[/tex])
The determinant [tex]\( \Delta_x \)[/tex] is obtained by replacing the first column of the coefficient matrix with the constants from the right-hand side:
[tex]\[ \Delta_x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} = c_1 b_2 - c_2 b_1 \][/tex]
Substituting the values:
[tex]\[ \Delta_x = (5 \cdot -1) - (1 \cdot 4) = -5 - 4 = -9 \][/tex]
### Step 5: Calculate the determinant for [tex]\( y \)[/tex] ([tex]\( \Delta_y \)[/tex])
The determinant [tex]\( \Delta_y \)[/tex] is obtained by replacing the second column of the coefficient matrix with the constants from the right-hand side:
[tex]\[ \Delta_y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} = a_1 c_2 - a_2 c_1 \][/tex]
Substituting the values:
[tex]\[ \Delta_y = (3 \cdot 1) - (6 \cdot 5) = 3 - 30 = -27 \][/tex]
### Step 6: Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
Using Cramer's Rule:
[tex]\[ x = \frac{\Delta_x}{\Delta} \][/tex]
[tex]\[ y = \frac{\Delta_y}{\Delta} \][/tex]
Substituting the values:
[tex]\[ x = \frac{-9}{-27} = \frac{1}{3} \quad \text{or} \quad 0.3333 \][/tex]
[tex]\[ y = \frac{-27}{-27} = 1 \][/tex]
### Step 7: State the solution
The solution to the system of equations is:
[tex]\[ x = \frac{1}{3}, \quad y = 1 \][/tex]
Or, in decimal form:
[tex]\[ x \approx 0.3333, \quad y = 1 \][/tex]
Therefore, the values that simultaneously satisfy both equations are [tex]\( x \approx 0.3333 \)[/tex] and [tex]\( y = 1 \)[/tex].
[tex]\[ \begin{array}{l} 3x + 4y = 5 \\ 6x - y = 1 \end{array} \][/tex]
we can use the method of determinants, also known as Cramer's Rule. Here are the steps to find the solution [tex]\( (x, y) \)[/tex]:
### Step 1: Set up the equations
We start by setting up the two linear equations:
1. [tex]\( 3x + 4y = 5 \)[/tex]
2. [tex]\( 6x - y = 1 \)[/tex]
### Step 2: Formulate the coefficient matrix and the constant matrix
We identify the coefficients from the given equations:
For the equation [tex]\( 3x + 4y = 5 \)[/tex]:
- Coefficient of [tex]\( x \)[/tex] (a₁) = 3
- Coefficient of [tex]\( y \)[/tex] (b₁) = 4
- Constant term (c₁) = 5
For the equation [tex]\( 6x - y = 1 \)[/tex]:
- Coefficient of [tex]\( x \)[/tex] (a₂) = 6
- Coefficient of [tex]\( y \)[/tex] (b₂) = -1
- Constant term (c₂) = 1
### Step 3: Calculate the determinant of the coefficient matrix ([tex]\( \Delta \)[/tex])
The determinant [tex]\(\Delta\)[/tex] of the coefficient matrix is given by:
[tex]\[ \Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 \][/tex]
Substituting the values:
[tex]\[ \Delta = (3 \cdot -1) - (6 \cdot 4) = -3 - 24 = -27 \][/tex]
### Step 4: Calculate the determinant for [tex]\( x \)[/tex] ([tex]\( \Delta_x \)[/tex])
The determinant [tex]\( \Delta_x \)[/tex] is obtained by replacing the first column of the coefficient matrix with the constants from the right-hand side:
[tex]\[ \Delta_x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} = c_1 b_2 - c_2 b_1 \][/tex]
Substituting the values:
[tex]\[ \Delta_x = (5 \cdot -1) - (1 \cdot 4) = -5 - 4 = -9 \][/tex]
### Step 5: Calculate the determinant for [tex]\( y \)[/tex] ([tex]\( \Delta_y \)[/tex])
The determinant [tex]\( \Delta_y \)[/tex] is obtained by replacing the second column of the coefficient matrix with the constants from the right-hand side:
[tex]\[ \Delta_y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} = a_1 c_2 - a_2 c_1 \][/tex]
Substituting the values:
[tex]\[ \Delta_y = (3 \cdot 1) - (6 \cdot 5) = 3 - 30 = -27 \][/tex]
### Step 6: Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
Using Cramer's Rule:
[tex]\[ x = \frac{\Delta_x}{\Delta} \][/tex]
[tex]\[ y = \frac{\Delta_y}{\Delta} \][/tex]
Substituting the values:
[tex]\[ x = \frac{-9}{-27} = \frac{1}{3} \quad \text{or} \quad 0.3333 \][/tex]
[tex]\[ y = \frac{-27}{-27} = 1 \][/tex]
### Step 7: State the solution
The solution to the system of equations is:
[tex]\[ x = \frac{1}{3}, \quad y = 1 \][/tex]
Or, in decimal form:
[tex]\[ x \approx 0.3333, \quad y = 1 \][/tex]
Therefore, the values that simultaneously satisfy both equations are [tex]\( x \approx 0.3333 \)[/tex] and [tex]\( y = 1 \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.