At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the system of equations
[tex]\[ \begin{array}{l} 3x + 4y = 5 \\ 6x - y = 1 \end{array} \][/tex]
we can use the method of determinants, also known as Cramer's Rule. Here are the steps to find the solution [tex]\( (x, y) \)[/tex]:
### Step 1: Set up the equations
We start by setting up the two linear equations:
1. [tex]\( 3x + 4y = 5 \)[/tex]
2. [tex]\( 6x - y = 1 \)[/tex]
### Step 2: Formulate the coefficient matrix and the constant matrix
We identify the coefficients from the given equations:
For the equation [tex]\( 3x + 4y = 5 \)[/tex]:
- Coefficient of [tex]\( x \)[/tex] (a₁) = 3
- Coefficient of [tex]\( y \)[/tex] (b₁) = 4
- Constant term (c₁) = 5
For the equation [tex]\( 6x - y = 1 \)[/tex]:
- Coefficient of [tex]\( x \)[/tex] (a₂) = 6
- Coefficient of [tex]\( y \)[/tex] (b₂) = -1
- Constant term (c₂) = 1
### Step 3: Calculate the determinant of the coefficient matrix ([tex]\( \Delta \)[/tex])
The determinant [tex]\(\Delta\)[/tex] of the coefficient matrix is given by:
[tex]\[ \Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 \][/tex]
Substituting the values:
[tex]\[ \Delta = (3 \cdot -1) - (6 \cdot 4) = -3 - 24 = -27 \][/tex]
### Step 4: Calculate the determinant for [tex]\( x \)[/tex] ([tex]\( \Delta_x \)[/tex])
The determinant [tex]\( \Delta_x \)[/tex] is obtained by replacing the first column of the coefficient matrix with the constants from the right-hand side:
[tex]\[ \Delta_x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} = c_1 b_2 - c_2 b_1 \][/tex]
Substituting the values:
[tex]\[ \Delta_x = (5 \cdot -1) - (1 \cdot 4) = -5 - 4 = -9 \][/tex]
### Step 5: Calculate the determinant for [tex]\( y \)[/tex] ([tex]\( \Delta_y \)[/tex])
The determinant [tex]\( \Delta_y \)[/tex] is obtained by replacing the second column of the coefficient matrix with the constants from the right-hand side:
[tex]\[ \Delta_y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} = a_1 c_2 - a_2 c_1 \][/tex]
Substituting the values:
[tex]\[ \Delta_y = (3 \cdot 1) - (6 \cdot 5) = 3 - 30 = -27 \][/tex]
### Step 6: Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
Using Cramer's Rule:
[tex]\[ x = \frac{\Delta_x}{\Delta} \][/tex]
[tex]\[ y = \frac{\Delta_y}{\Delta} \][/tex]
Substituting the values:
[tex]\[ x = \frac{-9}{-27} = \frac{1}{3} \quad \text{or} \quad 0.3333 \][/tex]
[tex]\[ y = \frac{-27}{-27} = 1 \][/tex]
### Step 7: State the solution
The solution to the system of equations is:
[tex]\[ x = \frac{1}{3}, \quad y = 1 \][/tex]
Or, in decimal form:
[tex]\[ x \approx 0.3333, \quad y = 1 \][/tex]
Therefore, the values that simultaneously satisfy both equations are [tex]\( x \approx 0.3333 \)[/tex] and [tex]\( y = 1 \)[/tex].
[tex]\[ \begin{array}{l} 3x + 4y = 5 \\ 6x - y = 1 \end{array} \][/tex]
we can use the method of determinants, also known as Cramer's Rule. Here are the steps to find the solution [tex]\( (x, y) \)[/tex]:
### Step 1: Set up the equations
We start by setting up the two linear equations:
1. [tex]\( 3x + 4y = 5 \)[/tex]
2. [tex]\( 6x - y = 1 \)[/tex]
### Step 2: Formulate the coefficient matrix and the constant matrix
We identify the coefficients from the given equations:
For the equation [tex]\( 3x + 4y = 5 \)[/tex]:
- Coefficient of [tex]\( x \)[/tex] (a₁) = 3
- Coefficient of [tex]\( y \)[/tex] (b₁) = 4
- Constant term (c₁) = 5
For the equation [tex]\( 6x - y = 1 \)[/tex]:
- Coefficient of [tex]\( x \)[/tex] (a₂) = 6
- Coefficient of [tex]\( y \)[/tex] (b₂) = -1
- Constant term (c₂) = 1
### Step 3: Calculate the determinant of the coefficient matrix ([tex]\( \Delta \)[/tex])
The determinant [tex]\(\Delta\)[/tex] of the coefficient matrix is given by:
[tex]\[ \Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 \][/tex]
Substituting the values:
[tex]\[ \Delta = (3 \cdot -1) - (6 \cdot 4) = -3 - 24 = -27 \][/tex]
### Step 4: Calculate the determinant for [tex]\( x \)[/tex] ([tex]\( \Delta_x \)[/tex])
The determinant [tex]\( \Delta_x \)[/tex] is obtained by replacing the first column of the coefficient matrix with the constants from the right-hand side:
[tex]\[ \Delta_x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} = c_1 b_2 - c_2 b_1 \][/tex]
Substituting the values:
[tex]\[ \Delta_x = (5 \cdot -1) - (1 \cdot 4) = -5 - 4 = -9 \][/tex]
### Step 5: Calculate the determinant for [tex]\( y \)[/tex] ([tex]\( \Delta_y \)[/tex])
The determinant [tex]\( \Delta_y \)[/tex] is obtained by replacing the second column of the coefficient matrix with the constants from the right-hand side:
[tex]\[ \Delta_y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} = a_1 c_2 - a_2 c_1 \][/tex]
Substituting the values:
[tex]\[ \Delta_y = (3 \cdot 1) - (6 \cdot 5) = 3 - 30 = -27 \][/tex]
### Step 6: Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
Using Cramer's Rule:
[tex]\[ x = \frac{\Delta_x}{\Delta} \][/tex]
[tex]\[ y = \frac{\Delta_y}{\Delta} \][/tex]
Substituting the values:
[tex]\[ x = \frac{-9}{-27} = \frac{1}{3} \quad \text{or} \quad 0.3333 \][/tex]
[tex]\[ y = \frac{-27}{-27} = 1 \][/tex]
### Step 7: State the solution
The solution to the system of equations is:
[tex]\[ x = \frac{1}{3}, \quad y = 1 \][/tex]
Or, in decimal form:
[tex]\[ x \approx 0.3333, \quad y = 1 \][/tex]
Therefore, the values that simultaneously satisfy both equations are [tex]\( x \approx 0.3333 \)[/tex] and [tex]\( y = 1 \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.