Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the system of equations
[tex]\[ \begin{array}{l} 3x + 4y = 5 \\ 6x - y = 1 \end{array} \][/tex]
we can use the method of determinants, also known as Cramer's Rule. Here are the steps to find the solution [tex]\( (x, y) \)[/tex]:
### Step 1: Set up the equations
We start by setting up the two linear equations:
1. [tex]\( 3x + 4y = 5 \)[/tex]
2. [tex]\( 6x - y = 1 \)[/tex]
### Step 2: Formulate the coefficient matrix and the constant matrix
We identify the coefficients from the given equations:
For the equation [tex]\( 3x + 4y = 5 \)[/tex]:
- Coefficient of [tex]\( x \)[/tex] (a₁) = 3
- Coefficient of [tex]\( y \)[/tex] (b₁) = 4
- Constant term (c₁) = 5
For the equation [tex]\( 6x - y = 1 \)[/tex]:
- Coefficient of [tex]\( x \)[/tex] (a₂) = 6
- Coefficient of [tex]\( y \)[/tex] (b₂) = -1
- Constant term (c₂) = 1
### Step 3: Calculate the determinant of the coefficient matrix ([tex]\( \Delta \)[/tex])
The determinant [tex]\(\Delta\)[/tex] of the coefficient matrix is given by:
[tex]\[ \Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 \][/tex]
Substituting the values:
[tex]\[ \Delta = (3 \cdot -1) - (6 \cdot 4) = -3 - 24 = -27 \][/tex]
### Step 4: Calculate the determinant for [tex]\( x \)[/tex] ([tex]\( \Delta_x \)[/tex])
The determinant [tex]\( \Delta_x \)[/tex] is obtained by replacing the first column of the coefficient matrix with the constants from the right-hand side:
[tex]\[ \Delta_x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} = c_1 b_2 - c_2 b_1 \][/tex]
Substituting the values:
[tex]\[ \Delta_x = (5 \cdot -1) - (1 \cdot 4) = -5 - 4 = -9 \][/tex]
### Step 5: Calculate the determinant for [tex]\( y \)[/tex] ([tex]\( \Delta_y \)[/tex])
The determinant [tex]\( \Delta_y \)[/tex] is obtained by replacing the second column of the coefficient matrix with the constants from the right-hand side:
[tex]\[ \Delta_y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} = a_1 c_2 - a_2 c_1 \][/tex]
Substituting the values:
[tex]\[ \Delta_y = (3 \cdot 1) - (6 \cdot 5) = 3 - 30 = -27 \][/tex]
### Step 6: Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
Using Cramer's Rule:
[tex]\[ x = \frac{\Delta_x}{\Delta} \][/tex]
[tex]\[ y = \frac{\Delta_y}{\Delta} \][/tex]
Substituting the values:
[tex]\[ x = \frac{-9}{-27} = \frac{1}{3} \quad \text{or} \quad 0.3333 \][/tex]
[tex]\[ y = \frac{-27}{-27} = 1 \][/tex]
### Step 7: State the solution
The solution to the system of equations is:
[tex]\[ x = \frac{1}{3}, \quad y = 1 \][/tex]
Or, in decimal form:
[tex]\[ x \approx 0.3333, \quad y = 1 \][/tex]
Therefore, the values that simultaneously satisfy both equations are [tex]\( x \approx 0.3333 \)[/tex] and [tex]\( y = 1 \)[/tex].
[tex]\[ \begin{array}{l} 3x + 4y = 5 \\ 6x - y = 1 \end{array} \][/tex]
we can use the method of determinants, also known as Cramer's Rule. Here are the steps to find the solution [tex]\( (x, y) \)[/tex]:
### Step 1: Set up the equations
We start by setting up the two linear equations:
1. [tex]\( 3x + 4y = 5 \)[/tex]
2. [tex]\( 6x - y = 1 \)[/tex]
### Step 2: Formulate the coefficient matrix and the constant matrix
We identify the coefficients from the given equations:
For the equation [tex]\( 3x + 4y = 5 \)[/tex]:
- Coefficient of [tex]\( x \)[/tex] (a₁) = 3
- Coefficient of [tex]\( y \)[/tex] (b₁) = 4
- Constant term (c₁) = 5
For the equation [tex]\( 6x - y = 1 \)[/tex]:
- Coefficient of [tex]\( x \)[/tex] (a₂) = 6
- Coefficient of [tex]\( y \)[/tex] (b₂) = -1
- Constant term (c₂) = 1
### Step 3: Calculate the determinant of the coefficient matrix ([tex]\( \Delta \)[/tex])
The determinant [tex]\(\Delta\)[/tex] of the coefficient matrix is given by:
[tex]\[ \Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 \][/tex]
Substituting the values:
[tex]\[ \Delta = (3 \cdot -1) - (6 \cdot 4) = -3 - 24 = -27 \][/tex]
### Step 4: Calculate the determinant for [tex]\( x \)[/tex] ([tex]\( \Delta_x \)[/tex])
The determinant [tex]\( \Delta_x \)[/tex] is obtained by replacing the first column of the coefficient matrix with the constants from the right-hand side:
[tex]\[ \Delta_x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} = c_1 b_2 - c_2 b_1 \][/tex]
Substituting the values:
[tex]\[ \Delta_x = (5 \cdot -1) - (1 \cdot 4) = -5 - 4 = -9 \][/tex]
### Step 5: Calculate the determinant for [tex]\( y \)[/tex] ([tex]\( \Delta_y \)[/tex])
The determinant [tex]\( \Delta_y \)[/tex] is obtained by replacing the second column of the coefficient matrix with the constants from the right-hand side:
[tex]\[ \Delta_y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} = a_1 c_2 - a_2 c_1 \][/tex]
Substituting the values:
[tex]\[ \Delta_y = (3 \cdot 1) - (6 \cdot 5) = 3 - 30 = -27 \][/tex]
### Step 6: Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
Using Cramer's Rule:
[tex]\[ x = \frac{\Delta_x}{\Delta} \][/tex]
[tex]\[ y = \frac{\Delta_y}{\Delta} \][/tex]
Substituting the values:
[tex]\[ x = \frac{-9}{-27} = \frac{1}{3} \quad \text{or} \quad 0.3333 \][/tex]
[tex]\[ y = \frac{-27}{-27} = 1 \][/tex]
### Step 7: State the solution
The solution to the system of equations is:
[tex]\[ x = \frac{1}{3}, \quad y = 1 \][/tex]
Or, in decimal form:
[tex]\[ x \approx 0.3333, \quad y = 1 \][/tex]
Therefore, the values that simultaneously satisfy both equations are [tex]\( x \approx 0.3333 \)[/tex] and [tex]\( y = 1 \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.