At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Match each description of an algebraic expression with the symbolic form of that expression.

1. 2 terms; variable [tex]\( x \)[/tex], constant [tex]\( 4.5 \)[/tex]
2. 2 terms; variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
3. 3 terms; variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex]; constant [tex]\( 3 \)[/tex]
4. 3 terms; variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex]; constant [tex]\( 2 \)[/tex]

A. [tex]\( 4.5 - 2x \)[/tex]
B. [tex]\( 4.5x + 2 - 3y \)[/tex]
C. [tex]\( x - 2y + 3 \)[/tex]
D. [tex]\( 4.5y - 2x \)[/tex]

Sagot :

Let's match each given description of an algebraic expression with the correct symbolic form step by step:

### Description 1:
2 terms; variable [tex]\(x\)[/tex], constant [tex]\(4.5\)[/tex]

To satisfy this description, we need an expression that has exactly two terms: one term involving the variable [tex]\(x\)[/tex] and one term that is a constant [tex]\(4.5\)[/tex].

Based on the given options:
- [tex]\( 4.5 - 2x \)[/tex]: This expression has two terms: [tex]\( 4.5 \)[/tex] (constant) and [tex]\( -2x \)[/tex] (term involving [tex]\(x\)[/tex]).

Thus, the matching expression is:

[tex]\[ \boxed{4.5 - 2x} \][/tex]

### Description 2:
2 terms; variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex]

To satisfy this description, the expression should contain two terms involving the variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex].

Based on the given options:
- None of the given expressions directly fit this description because they all have additional constants or more terms.

Thus, the matching expression is:

[tex]\[ \boxed{\text{Unable to determine with given data}} \][/tex]

### Description 3:
3 terms; variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex]; constant [tex]\(3\)[/tex]

To satisfy this description, the expression should contain exactly three terms: two terms involving the variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex], and one term that is a constant [tex]\(3\)[/tex].

Based on the given options:
- [tex]\( x - 2y + 3 \)[/tex]: This expression has three terms: [tex]\( x \)[/tex] (term involving [tex]\(x\)[/tex]), [tex]\( -2y \)[/tex] (term involving [tex]\(y\)[/tex]), and [tex]\( +3 \)[/tex] (constant term).

Thus, the matching expression is:

[tex]\[ \boxed{x - 2y + 3} \][/tex]

### Description 4:
3 terms; variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex]; constant [tex]\(2\)[/tex]

To satisfy this description, the expression should contain exactly three terms: two terms involving the variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex], and one term that is a constant [tex]\(2\)[/tex].

Based on the given options:
- [tex]\( 4.5x + 2 - 3y \)[/tex]: This expression has three terms: [tex]\( 4.5x \)[/tex] (term involving [tex]\(x\)[/tex]), [tex]\( -3y \)[/tex] (term involving [tex]\(y\)[/tex]), and [tex]\( +2 \)[/tex] (constant term).

Thus, the matching expression is:

[tex]\[ \boxed{4.5x + 2 - 3y} \][/tex]

So, the final matching expressions are:
1. [tex]\( 2 \)[/tex] terms; variable [tex]\( x \)[/tex], constant [tex]\( 4.5 \)[/tex]: [tex]\( 4.5 - 2x \)[/tex]
2. [tex]\( 2 \)[/tex] terms; variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex]: Unable to determine with given data
3. [tex]\( 3 \)[/tex] terms; variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex]; constant [tex]\( 3 \)[/tex]: [tex]\( x - 2y + 3 \)[/tex]
4. [tex]\( 3 \)[/tex] terms; variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex]; constant [tex]\( 2 \)[/tex]: [tex]\( 4.5x + 2 - 3y \)[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.