Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

How many extraneous solutions does the equation below have?

[tex]\[ \frac{2m}{2m+3} - \frac{2m}{2m-3} = 1 \][/tex]

A. 0
B. 1
C. 2
D. 3

Sagot :

To solve the equation [tex]\(\frac{2m}{2m + 3} - \frac{2m}{2m - 3} = 1\)[/tex] and determine the number of extraneous solutions, let's go through a step-by-step process.

### Step 1: Combine the Fractions
First, let's combine the fractions on the left-hand side of the equation:
[tex]\[ \frac{2m}{2m + 3} - \frac{2m}{2m - 3} \][/tex]

To combine these fractions, we'll need a common denominator, which is [tex]\((2m + 3)(2m - 3)\)[/tex].

[tex]\[ \frac{2m(2m - 3) - 2m(2m + 3)}{(2m + 3)(2m - 3)} \][/tex]

### Step 2: Simplify the Numerator
Now, let's expand and simplify the numerator:
[tex]\[ 2m(2m - 3) - 2m(2m + 3) = 4m^2 - 6m - (4m^2 + 6m) \][/tex]

Combine like terms in the numerator:
[tex]\[ 4m^2 - 6m - 4m^2 - 6m = -12m \][/tex]

So the combined fraction is:
[tex]\[ \frac{-12m}{(2m + 3)(2m - 3)} \][/tex]

### Step 3: Solve the Equation
The equation now reads:
[tex]\[ \frac{-12m}{(2m + 3)(2m - 3)} = 1 \][/tex]

Multiply both sides by [tex]\((2m + 3)(2m - 3)\)[/tex] to clear the fraction:
[tex]\[ -12m = (2m + 3)(2m - 3) \][/tex]

Recognize that [tex]\((2m + 3)(2m - 3)\)[/tex] is a difference of squares:
[tex]\[ (2m + 3)(2m - 3) = 4m^2 - 9 \][/tex]

So the equation becomes:
[tex]\[ -12m = 4m^2 - 9 \][/tex]

### Step 4: Rearrange and Solve the Quadratic Equation
Rearrange the equation to standard quadratic form:
[tex]\[ 4m^2 - 12m - 9 = 0 \][/tex]

Using the quadratic formula [tex]\(m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex] where [tex]\(a = 4\)[/tex], [tex]\(b = -12\)[/tex], and [tex]\(c = -9\)[/tex]:
[tex]\[ m = \frac{12 \pm \sqrt{(-12)^2 - 4 \cdot 4 \cdot (-9)}}{2 \cdot 4} \][/tex]

Calculate the discriminant:
[tex]\[ \Delta = 144 + 144 = 288 \][/tex]

So:
[tex]\[ m = \frac{12 \pm \sqrt{288}}{8} \][/tex]

Simplify [tex]\(\sqrt{288}\)[/tex]:
[tex]\[ \sqrt{288} = \sqrt{144 \cdot 2} = 12\sqrt{2} \][/tex]

Thus:
[tex]\[ m = \frac{12 \pm 12\sqrt{2}}{8} = \frac{12(1 \pm \sqrt{2})}{8} = \frac{3(1 \pm \sqrt{2})}{2} \][/tex]

The solutions are:
[tex]\[ m = \frac{3(1 + \sqrt{2})}{2} \quad \text{and} \quad m = \frac{3(1 - \sqrt{2})}{2} \][/tex]

### Step 5: Check for Extraneous Solutions
We must ensure that neither solution makes the original denominators zero. We originally stated:
[tex]\[ 2m + 3 = 0 \quad \text{or} \quad 2m - 3 = 0 \][/tex]

1. For [tex]\(m = \frac{3(1 + \sqrt{2})}{2}\)[/tex]:
[tex]\[ 2m = 3(1+\sqrt{2}) \quad \Rightarrow \quad 2m + 3 = 3(1+\sqrt{2}) + 3 \neq 0 \quad \text{and} \quad 2m - 3 = 3(1+\sqrt{2}) - 3 \neq 0 \][/tex]

2. For [tex]\(m = \frac{3(1 - \sqrt{2})}{2}\)[/tex]:
[tex]\[ 2m = 3(1-\sqrt{2}) \quad \Rightarrow \quad 2m + 3 = 3(1-\sqrt{2}) + 3 \neq 0 \quad \text{and} \quad 2m - 3 = 3(1-\sqrt{2}) - 3 \neq 0 \][/tex]

### Conclusion
Since neither solution makes the denominator zero, there are no extraneous solutions.

Final Answer:
[tex]\[ 0 \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.