At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's go through the problem step-by-step:
1. The employee works 35 hours per week.
2. The aim is to find an inequality representing the condition for earning more than [tex]$400 per week. 3. We assume the hourly wage of the employee is $[/tex]8.
Firstly, the income from hourly wages can be calculated:
[tex]\[ 35 \text{ hours/week} \times 8 \text{ dollars/hour} = 280 \text{ dollars/week} \][/tex]
Next, we need to account for the weekly sales, represented by [tex]\( x \)[/tex]. The employee earns an additional 8% commission on these sales:
[tex]\[ 0.08x \][/tex]
So, the total weekly earnings, including both the hourly wage and sales commission, is:
[tex]\[ 280 + 0.08x \][/tex]
To find the weekly sales [tex]\( x \)[/tex] required to earn more than [tex]$400 per week, we set up the following inequality: \[ 280 + 0.08x > 400 \] Now, we break it down further: Subtract 280 from both sides to isolate the term with \( x \): \[ 280 + 0.08x - 280 > 400 - 280 \] \[ 0.08x > 120 \] The simplified inequality is: \[ x > 1500 \] Thus, the inequality that represents the condition for the employee to earn more than $[/tex]400 per week is:
[tex]\[ 35(8) + 0.08x > 400 \][/tex]
So, option B is correct:
[tex]\[ 35(8)+0.08 x>400 \][/tex]
1. The employee works 35 hours per week.
2. The aim is to find an inequality representing the condition for earning more than [tex]$400 per week. 3. We assume the hourly wage of the employee is $[/tex]8.
Firstly, the income from hourly wages can be calculated:
[tex]\[ 35 \text{ hours/week} \times 8 \text{ dollars/hour} = 280 \text{ dollars/week} \][/tex]
Next, we need to account for the weekly sales, represented by [tex]\( x \)[/tex]. The employee earns an additional 8% commission on these sales:
[tex]\[ 0.08x \][/tex]
So, the total weekly earnings, including both the hourly wage and sales commission, is:
[tex]\[ 280 + 0.08x \][/tex]
To find the weekly sales [tex]\( x \)[/tex] required to earn more than [tex]$400 per week, we set up the following inequality: \[ 280 + 0.08x > 400 \] Now, we break it down further: Subtract 280 from both sides to isolate the term with \( x \): \[ 280 + 0.08x - 280 > 400 - 280 \] \[ 0.08x > 120 \] The simplified inequality is: \[ x > 1500 \] Thus, the inequality that represents the condition for the employee to earn more than $[/tex]400 per week is:
[tex]\[ 35(8) + 0.08x > 400 \][/tex]
So, option B is correct:
[tex]\[ 35(8)+0.08 x>400 \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.