Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Question 8 of 10

A student performed the following steps to find the solution to the equation [tex][tex]$x^2 + 14x + 45 = 0$[/tex][/tex]. Where did the student go wrong?

Step 1. Factor the polynomial into [tex][tex]$(x + 5)(x + 9)$[/tex][/tex].
Step 2. [tex][tex]$x + 5 = 0$[/tex][/tex] or [tex][tex]$x - 9 = 0$[/tex][/tex].
Step 3. [tex][tex]$x = -5$[/tex][/tex] or [tex][tex]$x = 9$[/tex][/tex].

A. in Step 1
B. The student did not make any mistakes; the solution is correct.
C. in Step 3
D. in Step 2


Sagot :

The given problem is to find the solution to the quadratic equation [tex]\(x^2 + 14x + 45 = 0\)[/tex] and identify any mistakes made in the steps provided by the student.

Let's go through each step to determine where the mistake occurred:

1. Step 1: Factoring the polynomial
[tex]\[ x^2 + 14x + 45 = (x + 5)(x + 9) \][/tex]
To verify this factoring, we expand [tex]\((x + 5)(x + 9)\)[/tex]:
[tex]\[ (x + 5)(x + 9) = x^2 + 9x + 5x + 45 = x^2 + 14x + 45 \][/tex]
Factoring is correctly done in Step 1.

2. Step 2: Setting each factor to zero
The student sets each factor to zero to find the roots:
[tex]\[ x + 5 = 0 \quad \text{or} \quad x + 9 = 0 \][/tex]
It should be [tex]\(\textbf{x + 5 = 0}\)[/tex] or [tex]\(\textbf{x + 9 = 0}\)[/tex], not [tex]\(x + 5 = 0\)[/tex] or [tex]\(x - 9 = 0\)[/tex] as stated in the student's step. There is no equation [tex]\(x - 9 = 0\)[/tex] from the given factorization. Thus, the error is in Step 2.

3. Step 3: Solving the equations
If using [tex]\(x + 5 = 0\)[/tex] and [tex]\(x + 9 = 0\)[/tex]:
[tex]\[ x + 5 = 0 \implies x = -5 \][/tex]
[tex]\[ x + 9 = 0 \implies x = -9 \][/tex]
So, the correct solutions are [tex]\(x = -5\)[/tex] or [tex]\(x = -9\)[/tex].

Since the error is in step 2 where there is a mention of [tex]\(x - 9 = 0\)[/tex] instead of [tex]\(x + 9 = 0\)[/tex], the mistake lies here.

Therefore, the correct answer is:
[tex]\[ \boxed{D. \text{in Step 2}} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.