Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which of the given options are solutions to the equation:
[tex]\[ 2x^2 + 18x = 20 \][/tex]
we need to solve for [tex]\( x \)[/tex] and then check the provided options.
First, we rewrite the equation in standard quadratic form:
[tex]\[ 2x^2 + 18x - 20 = 0 \][/tex]
Next, we solve the quadratic equation. The solutions to the equation [tex]\( ax^2 + bx + c = 0 \)[/tex] are found using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\( a = 2 \)[/tex], [tex]\( b = 18 \)[/tex], and [tex]\( c = -20 \)[/tex].
Applying these values to the quadratic formula, we get two solutions.
The solutions are:
[tex]\[ x = -10 \][/tex]
[tex]\[ x = 1 \][/tex]
Now, we verify which of the given options are solutions to the equation. The provided options are:
- A. -10
- B. -1
- C. 20
- D. 1
- E. -2
- F. -2
We check each option by substituting it back into the original equation and verifying whether the equation holds.
For A. [tex]\( x = -10 \)[/tex]:
[tex]\[ 2(-10)^2 + 18(-10) = 2(100) - 180 = 200 - 180 = 20 \][/tex]
This satisfies the equation, so [tex]\( x = -10 \)[/tex] is a solution.
For B. [tex]\( x = -1 \)[/tex]:
[tex]\[ 2(-1)^2 + 18(-1) = 2(1) - 18 = 2 - 18 = -16 \][/tex]
This does not satisfy the equation, so [tex]\( x = -1 \)[/tex] is not a solution.
For C. [tex]\( x = 20 \)[/tex]:
[tex]\[ 2(20)^2 + 18(20) = 2(400) + 360 = 800 + 360 = 1160 \][/tex]
This does not satisfy the equation, so [tex]\( x = 20 \)[/tex] is not a solution.
For D. [tex]\( x = 1 \)[/tex]:
[tex]\[ 2(1)^2 + 18(1) = 2(1) + 18 = 2 + 18 = 20 \][/tex]
This satisfies the equation, so [tex]\( x = 1 \)[/tex] is a solution.
For E. [tex]\( x = -2 \)[/tex]:
[tex]\[ 2(-2)^2 + 18(-2) = 2(4) - 36 = 8 - 36 = -28 \][/tex]
This does not satisfy the equation, so [tex]\( x = -2 \)[/tex] is not a solution.
For F. [tex]\( x = -2 \)[/tex] (Again):
This would be the same as option E, so [tex]\( x = -2 \)[/tex] is not a solution.
Therefore, the options that satisfy the equation are:
- A. -10
- D. 1
[tex]\[ 2x^2 + 18x = 20 \][/tex]
we need to solve for [tex]\( x \)[/tex] and then check the provided options.
First, we rewrite the equation in standard quadratic form:
[tex]\[ 2x^2 + 18x - 20 = 0 \][/tex]
Next, we solve the quadratic equation. The solutions to the equation [tex]\( ax^2 + bx + c = 0 \)[/tex] are found using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\( a = 2 \)[/tex], [tex]\( b = 18 \)[/tex], and [tex]\( c = -20 \)[/tex].
Applying these values to the quadratic formula, we get two solutions.
The solutions are:
[tex]\[ x = -10 \][/tex]
[tex]\[ x = 1 \][/tex]
Now, we verify which of the given options are solutions to the equation. The provided options are:
- A. -10
- B. -1
- C. 20
- D. 1
- E. -2
- F. -2
We check each option by substituting it back into the original equation and verifying whether the equation holds.
For A. [tex]\( x = -10 \)[/tex]:
[tex]\[ 2(-10)^2 + 18(-10) = 2(100) - 180 = 200 - 180 = 20 \][/tex]
This satisfies the equation, so [tex]\( x = -10 \)[/tex] is a solution.
For B. [tex]\( x = -1 \)[/tex]:
[tex]\[ 2(-1)^2 + 18(-1) = 2(1) - 18 = 2 - 18 = -16 \][/tex]
This does not satisfy the equation, so [tex]\( x = -1 \)[/tex] is not a solution.
For C. [tex]\( x = 20 \)[/tex]:
[tex]\[ 2(20)^2 + 18(20) = 2(400) + 360 = 800 + 360 = 1160 \][/tex]
This does not satisfy the equation, so [tex]\( x = 20 \)[/tex] is not a solution.
For D. [tex]\( x = 1 \)[/tex]:
[tex]\[ 2(1)^2 + 18(1) = 2(1) + 18 = 2 + 18 = 20 \][/tex]
This satisfies the equation, so [tex]\( x = 1 \)[/tex] is a solution.
For E. [tex]\( x = -2 \)[/tex]:
[tex]\[ 2(-2)^2 + 18(-2) = 2(4) - 36 = 8 - 36 = -28 \][/tex]
This does not satisfy the equation, so [tex]\( x = -2 \)[/tex] is not a solution.
For F. [tex]\( x = -2 \)[/tex] (Again):
This would be the same as option E, so [tex]\( x = -2 \)[/tex] is not a solution.
Therefore, the options that satisfy the equation are:
- A. -10
- D. 1
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.