Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which of the given options are solutions to the equation:
[tex]\[ 2x^2 + 18x = 20 \][/tex]
we need to solve for [tex]\( x \)[/tex] and then check the provided options.
First, we rewrite the equation in standard quadratic form:
[tex]\[ 2x^2 + 18x - 20 = 0 \][/tex]
Next, we solve the quadratic equation. The solutions to the equation [tex]\( ax^2 + bx + c = 0 \)[/tex] are found using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\( a = 2 \)[/tex], [tex]\( b = 18 \)[/tex], and [tex]\( c = -20 \)[/tex].
Applying these values to the quadratic formula, we get two solutions.
The solutions are:
[tex]\[ x = -10 \][/tex]
[tex]\[ x = 1 \][/tex]
Now, we verify which of the given options are solutions to the equation. The provided options are:
- A. -10
- B. -1
- C. 20
- D. 1
- E. -2
- F. -2
We check each option by substituting it back into the original equation and verifying whether the equation holds.
For A. [tex]\( x = -10 \)[/tex]:
[tex]\[ 2(-10)^2 + 18(-10) = 2(100) - 180 = 200 - 180 = 20 \][/tex]
This satisfies the equation, so [tex]\( x = -10 \)[/tex] is a solution.
For B. [tex]\( x = -1 \)[/tex]:
[tex]\[ 2(-1)^2 + 18(-1) = 2(1) - 18 = 2 - 18 = -16 \][/tex]
This does not satisfy the equation, so [tex]\( x = -1 \)[/tex] is not a solution.
For C. [tex]\( x = 20 \)[/tex]:
[tex]\[ 2(20)^2 + 18(20) = 2(400) + 360 = 800 + 360 = 1160 \][/tex]
This does not satisfy the equation, so [tex]\( x = 20 \)[/tex] is not a solution.
For D. [tex]\( x = 1 \)[/tex]:
[tex]\[ 2(1)^2 + 18(1) = 2(1) + 18 = 2 + 18 = 20 \][/tex]
This satisfies the equation, so [tex]\( x = 1 \)[/tex] is a solution.
For E. [tex]\( x = -2 \)[/tex]:
[tex]\[ 2(-2)^2 + 18(-2) = 2(4) - 36 = 8 - 36 = -28 \][/tex]
This does not satisfy the equation, so [tex]\( x = -2 \)[/tex] is not a solution.
For F. [tex]\( x = -2 \)[/tex] (Again):
This would be the same as option E, so [tex]\( x = -2 \)[/tex] is not a solution.
Therefore, the options that satisfy the equation are:
- A. -10
- D. 1
[tex]\[ 2x^2 + 18x = 20 \][/tex]
we need to solve for [tex]\( x \)[/tex] and then check the provided options.
First, we rewrite the equation in standard quadratic form:
[tex]\[ 2x^2 + 18x - 20 = 0 \][/tex]
Next, we solve the quadratic equation. The solutions to the equation [tex]\( ax^2 + bx + c = 0 \)[/tex] are found using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\( a = 2 \)[/tex], [tex]\( b = 18 \)[/tex], and [tex]\( c = -20 \)[/tex].
Applying these values to the quadratic formula, we get two solutions.
The solutions are:
[tex]\[ x = -10 \][/tex]
[tex]\[ x = 1 \][/tex]
Now, we verify which of the given options are solutions to the equation. The provided options are:
- A. -10
- B. -1
- C. 20
- D. 1
- E. -2
- F. -2
We check each option by substituting it back into the original equation and verifying whether the equation holds.
For A. [tex]\( x = -10 \)[/tex]:
[tex]\[ 2(-10)^2 + 18(-10) = 2(100) - 180 = 200 - 180 = 20 \][/tex]
This satisfies the equation, so [tex]\( x = -10 \)[/tex] is a solution.
For B. [tex]\( x = -1 \)[/tex]:
[tex]\[ 2(-1)^2 + 18(-1) = 2(1) - 18 = 2 - 18 = -16 \][/tex]
This does not satisfy the equation, so [tex]\( x = -1 \)[/tex] is not a solution.
For C. [tex]\( x = 20 \)[/tex]:
[tex]\[ 2(20)^2 + 18(20) = 2(400) + 360 = 800 + 360 = 1160 \][/tex]
This does not satisfy the equation, so [tex]\( x = 20 \)[/tex] is not a solution.
For D. [tex]\( x = 1 \)[/tex]:
[tex]\[ 2(1)^2 + 18(1) = 2(1) + 18 = 2 + 18 = 20 \][/tex]
This satisfies the equation, so [tex]\( x = 1 \)[/tex] is a solution.
For E. [tex]\( x = -2 \)[/tex]:
[tex]\[ 2(-2)^2 + 18(-2) = 2(4) - 36 = 8 - 36 = -28 \][/tex]
This does not satisfy the equation, so [tex]\( x = -2 \)[/tex] is not a solution.
For F. [tex]\( x = -2 \)[/tex] (Again):
This would be the same as option E, so [tex]\( x = -2 \)[/tex] is not a solution.
Therefore, the options that satisfy the equation are:
- A. -10
- D. 1
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.