At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine whether a point belongs to the solution region of the given system of inequalities, we need to verify that it satisfies both inequalities:
[tex]\[ \begin{array}{l} y > 1.5^x + 4 \\ y < \frac{2}{3}x + 6 \end{array} \][/tex]
Let's choose a point [tex]\((x, y)\)[/tex] and check whether it satisfies both inequalities.
Let's test the point [tex]\((2, 6)\)[/tex]:
Step 1: Check the first inequality [tex]\( y > 1.5^x + 4 \)[/tex]
For [tex]\( x = 2 \)[/tex]:
[tex]\[ y > 1.5^2 + 4 \][/tex]
Simplifying the right-hand side:
[tex]\[ y > 1.5 \times 1.5 + 4 \][/tex]
[tex]\[ y > 2.25 + 4 \][/tex]
[tex]\[ y > 6.25 \][/tex]
Substitute [tex]\( y = 6 \)[/tex]:
[tex]\[ 6 > 6.25 \][/tex]
This inequality is False.
Step 2: Check the second inequality [tex]\( y < \frac{2}{3}x + 6 \)[/tex]
For [tex]\( x = 2 \)[/tex]:
[tex]\[ y < \frac{2}{3} \times 2 + 6 \][/tex]
Simplifying the right-hand side:
[tex]\[ y < \frac{4}{3} + 6 \][/tex]
[tex]\[ y < \frac{4}{3} + \frac{18}{3} \][/tex]
[tex]\[ y < \frac{22}{3} \][/tex]
[tex]\[ y < 7.\overline{3} \][/tex]
Substitute [tex]\( y = 6 \)[/tex]:
[tex]\[ 6 < 7.\overline{3} \][/tex]
This inequality is True.
Conclusion:
For the point [tex]\((2, 6)\)[/tex], we checked both inequalities:
- The first inequality is False.
- The second inequality is True.
Since a point must satisfy both inequalities to belong to the solution region, the point [tex]\((2, 6)\)[/tex] does not satisfy the first inequality.
Thus, the point [tex]\( (2, 6) \)[/tex] does not belong to the solution region of this system of inequalities.
[tex]\[ \begin{array}{l} y > 1.5^x + 4 \\ y < \frac{2}{3}x + 6 \end{array} \][/tex]
Let's choose a point [tex]\((x, y)\)[/tex] and check whether it satisfies both inequalities.
Let's test the point [tex]\((2, 6)\)[/tex]:
Step 1: Check the first inequality [tex]\( y > 1.5^x + 4 \)[/tex]
For [tex]\( x = 2 \)[/tex]:
[tex]\[ y > 1.5^2 + 4 \][/tex]
Simplifying the right-hand side:
[tex]\[ y > 1.5 \times 1.5 + 4 \][/tex]
[tex]\[ y > 2.25 + 4 \][/tex]
[tex]\[ y > 6.25 \][/tex]
Substitute [tex]\( y = 6 \)[/tex]:
[tex]\[ 6 > 6.25 \][/tex]
This inequality is False.
Step 2: Check the second inequality [tex]\( y < \frac{2}{3}x + 6 \)[/tex]
For [tex]\( x = 2 \)[/tex]:
[tex]\[ y < \frac{2}{3} \times 2 + 6 \][/tex]
Simplifying the right-hand side:
[tex]\[ y < \frac{4}{3} + 6 \][/tex]
[tex]\[ y < \frac{4}{3} + \frac{18}{3} \][/tex]
[tex]\[ y < \frac{22}{3} \][/tex]
[tex]\[ y < 7.\overline{3} \][/tex]
Substitute [tex]\( y = 6 \)[/tex]:
[tex]\[ 6 < 7.\overline{3} \][/tex]
This inequality is True.
Conclusion:
For the point [tex]\((2, 6)\)[/tex], we checked both inequalities:
- The first inequality is False.
- The second inequality is True.
Since a point must satisfy both inequalities to belong to the solution region, the point [tex]\((2, 6)\)[/tex] does not satisfy the first inequality.
Thus, the point [tex]\( (2, 6) \)[/tex] does not belong to the solution region of this system of inequalities.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.