Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To analyze the polynomial [tex]\( y = x^4 + 4x^3 + 5x^2 + 4x + 4 \)[/tex], we will examine each statement carefully.
1. The function is of degree 10:
- The degree of a polynomial is the highest power of the variable [tex]\( x \)[/tex] in the polynomial.
- In [tex]\( y = x^4 + 4x^3 + 5x^2 + 4x + 4 \)[/tex], the highest power of [tex]\( x \)[/tex] is 4.
- Therefore, the degree of this polynomial is 4, not 10.
- This statement is false.
2. The function has at least one zero in the set of complex numbers:
- According to the Fundamental Theorem of Algebra, every non-constant polynomial has at least one complex root.
- Since our polynomial is of degree 4 (which is non-constant), it must have at least one complex root.
- This statement is true.
3. The function has a zero with a multiplicity of 5:
- The multiplicity of a zero is the number of times that zero appears as a root of the polynomial.
- Since the polynomial is of degree 4, the maximum possible multiplicity for any zero would be 4.
- Therefore, it is impossible for this polynomial to have a zero with a multiplicity of 5.
- This statement is false.
4. The function cannot be graphed:
- A polynomial function can always be graphed because it is a continuous and smooth function.
- Therefore, this statement is false.
In summary, the only true statement about the polynomial [tex]\( y = x^4 + 4x^3 + 5x^2 + 4x + 4 \)[/tex] is:
The function has at least one zero in the set of complex numbers.
1. The function is of degree 10:
- The degree of a polynomial is the highest power of the variable [tex]\( x \)[/tex] in the polynomial.
- In [tex]\( y = x^4 + 4x^3 + 5x^2 + 4x + 4 \)[/tex], the highest power of [tex]\( x \)[/tex] is 4.
- Therefore, the degree of this polynomial is 4, not 10.
- This statement is false.
2. The function has at least one zero in the set of complex numbers:
- According to the Fundamental Theorem of Algebra, every non-constant polynomial has at least one complex root.
- Since our polynomial is of degree 4 (which is non-constant), it must have at least one complex root.
- This statement is true.
3. The function has a zero with a multiplicity of 5:
- The multiplicity of a zero is the number of times that zero appears as a root of the polynomial.
- Since the polynomial is of degree 4, the maximum possible multiplicity for any zero would be 4.
- Therefore, it is impossible for this polynomial to have a zero with a multiplicity of 5.
- This statement is false.
4. The function cannot be graphed:
- A polynomial function can always be graphed because it is a continuous and smooth function.
- Therefore, this statement is false.
In summary, the only true statement about the polynomial [tex]\( y = x^4 + 4x^3 + 5x^2 + 4x + 4 \)[/tex] is:
The function has at least one zero in the set of complex numbers.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.