Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which equation is equivalent to [tex]\( 9^{x-3} = 729 \)[/tex], let's rewrite the equation in different forms and analyze the options given.
First, we need to express [tex]\( 729 \)[/tex] as a power of [tex]\( 9 \)[/tex]:
[tex]\[ 9^{x-3} = 729 \][/tex]
To find this power, note that [tex]\( 9 \)[/tex] can be written as [tex]\( 3^2 \)[/tex]:
[tex]\[ 9 = 3^2 \][/tex]
Then [tex]\( 9 \)[/tex] raised to any power [tex]\( y \)[/tex] can be written as:
[tex]\[ 9^y = (3^2)^y = 3^{2y} \][/tex]
Thus, [tex]\( 9^{x-3} \)[/tex] can be rewritten as:
[tex]\[ 9^{x-3} = (3^2)^{x-3} = 3^{2(x-3)} \][/tex]
We need to express [tex]\( 729 \)[/tex] as a power of [tex]\( 3 \)[/tex]:
[tex]\[ 729 = 3^6 \][/tex]
So the equation becomes:
[tex]\[ 3^{2(x-3)} = 3^6 \][/tex]
Since the bases are the same, we can equate the exponents:
[tex]\[ 2(x-3) = 6 \][/tex]
Simplify the equation:
[tex]\[ 2x - 6 = 6 \][/tex]
[tex]\[ 2x = 12 \][/tex]
[tex]\[ x = 6 \][/tex]
Now, let’s go back to the options to find the one that matches this transformed equation:
1. [tex]\( 9^{x-3} = 9^{81} \)[/tex]
2. [tex]\( 9^{x-3} = 9^3 \)[/tex]
3. [tex]\( 3^{x-3} = 3^6 \)[/tex]
4. [tex]\( 3^{2(x-3)} = 3^6 \)[/tex]
Option (2) reads [tex]\( 9^{x-3} = 9^3 \)[/tex].
By comparing it with [tex]\( 9^{x-3} = 729 \)[/tex], and since we found [tex]\( 729 = 9^3 \)[/tex], this option is correct.
Therefore, the equation equivalent to [tex]\( 9^{x-3} = 729 \)[/tex] is:
[tex]\[ 9^{x-3} = 9^3 \][/tex]
First, we need to express [tex]\( 729 \)[/tex] as a power of [tex]\( 9 \)[/tex]:
[tex]\[ 9^{x-3} = 729 \][/tex]
To find this power, note that [tex]\( 9 \)[/tex] can be written as [tex]\( 3^2 \)[/tex]:
[tex]\[ 9 = 3^2 \][/tex]
Then [tex]\( 9 \)[/tex] raised to any power [tex]\( y \)[/tex] can be written as:
[tex]\[ 9^y = (3^2)^y = 3^{2y} \][/tex]
Thus, [tex]\( 9^{x-3} \)[/tex] can be rewritten as:
[tex]\[ 9^{x-3} = (3^2)^{x-3} = 3^{2(x-3)} \][/tex]
We need to express [tex]\( 729 \)[/tex] as a power of [tex]\( 3 \)[/tex]:
[tex]\[ 729 = 3^6 \][/tex]
So the equation becomes:
[tex]\[ 3^{2(x-3)} = 3^6 \][/tex]
Since the bases are the same, we can equate the exponents:
[tex]\[ 2(x-3) = 6 \][/tex]
Simplify the equation:
[tex]\[ 2x - 6 = 6 \][/tex]
[tex]\[ 2x = 12 \][/tex]
[tex]\[ x = 6 \][/tex]
Now, let’s go back to the options to find the one that matches this transformed equation:
1. [tex]\( 9^{x-3} = 9^{81} \)[/tex]
2. [tex]\( 9^{x-3} = 9^3 \)[/tex]
3. [tex]\( 3^{x-3} = 3^6 \)[/tex]
4. [tex]\( 3^{2(x-3)} = 3^6 \)[/tex]
Option (2) reads [tex]\( 9^{x-3} = 9^3 \)[/tex].
By comparing it with [tex]\( 9^{x-3} = 729 \)[/tex], and since we found [tex]\( 729 = 9^3 \)[/tex], this option is correct.
Therefore, the equation equivalent to [tex]\( 9^{x-3} = 729 \)[/tex] is:
[tex]\[ 9^{x-3} = 9^3 \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.