Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

The hypotenuse of a [tex]45^{\circ}-45^{\circ}-90^{\circ}[/tex] triangle measures [tex]22 \sqrt{2}[/tex] units.

What is the length of one leg of the triangle?

A. 11 units
B. [tex]11 \sqrt{2}[/tex] units
C. 22 units
D. [tex]22 \sqrt{2}[/tex] units


Sagot :

In a [tex]\( 45^\circ - 45^\circ - 90^\circ \)[/tex] triangle, the properties of the triangle are well defined. Specifically, the legs of such a triangle are congruent (they have the same length), and the hypotenuse is [tex]\( \sqrt{2} \)[/tex] times the length of each leg.

Let's denote the length of each leg of the triangle as [tex]\( L \)[/tex]. According to the properties of a [tex]\( 45^\circ - 45^\circ - 90^\circ \)[/tex] triangle, the hypotenuse (H) can be expressed as:

[tex]\[ \text{H} = L \cdot \sqrt{2} \][/tex]

Given that the hypotenuse is [tex]\( 22 \sqrt{2} \)[/tex]:

[tex]\[ 22 \sqrt{2} = L \cdot \sqrt{2} \][/tex]

To find the leg length [tex]\( L \)[/tex], we can divide both sides of the equation by [tex]\( \sqrt{2} \)[/tex]:

[tex]\[ L = \frac{22 \sqrt{2}}{\sqrt{2}} \][/tex]

Since [tex]\( \sqrt{2} \)[/tex] in the numerator and denominator cancels out, we get:

[tex]\[ L = 22 \][/tex]

Therefore, the length of one leg of the triangle is [tex]\( 22 \)[/tex] units. Hence, the correct answer to the question is:

22 units