Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve this problem, we need to use the principle of conservation of linear momentum, which states that the total momentum of a system remains constant if no external forces are acting on it.
Here’s the detailed step-by-step solution:
1. Identify the initial and final momenta of the bowling ball:
- Initial momentum of the bowling ball = [tex]\( +30 \, \text{kg} \cdot \text{m/s} \)[/tex]
- Final momentum of the bowling ball = [tex]\( +13 \, \text{kg} \cdot \text{m/s} \)[/tex]
2. Calculate the change in momentum of the bowling ball:
- Change in momentum of the bowling ball = Initial momentum - Final momentum
- Change in momentum of the bowling ball = [tex]\( 30 \, \text{kg} \cdot \text{m/s} - 13 \, \text{kg} \cdot \text{m/s} \)[/tex]
- Change in momentum of the bowling ball = [tex]\( 17 \, \text{kg} \cdot \text{m/s} \)[/tex]
3. Use the principle of conservation of momentum:
- According to the conservation of momentum, the change in momentum of the bowling ball is equal and opposite to the momentum gained by the bowling pin (assuming an isolated system with no external forces).
4. Calculate the final momentum of the bowling pin:
- Since the bowling pin was initially stationary, its initial momentum was [tex]\(0 \, \text{kg} \cdot \text{m/s} \)[/tex].
- Final momentum of the bowling pin = Change in momentum of the bowling ball
- Final momentum of the bowling pin = [tex]\( 17 \, \text{kg} \cdot \text{m/s} \)[/tex]
Therefore, the magnitude of the final momentum of the bowling pin is [tex]\( \boxed{17 \, \text{kg} \cdot \text{m/s}} \)[/tex].
Here’s the detailed step-by-step solution:
1. Identify the initial and final momenta of the bowling ball:
- Initial momentum of the bowling ball = [tex]\( +30 \, \text{kg} \cdot \text{m/s} \)[/tex]
- Final momentum of the bowling ball = [tex]\( +13 \, \text{kg} \cdot \text{m/s} \)[/tex]
2. Calculate the change in momentum of the bowling ball:
- Change in momentum of the bowling ball = Initial momentum - Final momentum
- Change in momentum of the bowling ball = [tex]\( 30 \, \text{kg} \cdot \text{m/s} - 13 \, \text{kg} \cdot \text{m/s} \)[/tex]
- Change in momentum of the bowling ball = [tex]\( 17 \, \text{kg} \cdot \text{m/s} \)[/tex]
3. Use the principle of conservation of momentum:
- According to the conservation of momentum, the change in momentum of the bowling ball is equal and opposite to the momentum gained by the bowling pin (assuming an isolated system with no external forces).
4. Calculate the final momentum of the bowling pin:
- Since the bowling pin was initially stationary, its initial momentum was [tex]\(0 \, \text{kg} \cdot \text{m/s} \)[/tex].
- Final momentum of the bowling pin = Change in momentum of the bowling ball
- Final momentum of the bowling pin = [tex]\( 17 \, \text{kg} \cdot \text{m/s} \)[/tex]
Therefore, the magnitude of the final momentum of the bowling pin is [tex]\( \boxed{17 \, \text{kg} \cdot \text{m/s}} \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.