Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's solve the problem step-by-step:
1. Identify the formulas and given values:
- The base of the pyramid is a square with side length [tex]\( s \)[/tex].
- The height of the pyramid [tex]\( h \)[/tex] is given as [tex]\(\frac{2}{3}\)[/tex] of the side length [tex]\( s \)[/tex].
2. Calculate the height [tex]\( h \)[/tex]:
[tex]\[ h = \frac{2}{3}s \][/tex]
3. Formula for the volume of the pyramid:
The volume [tex]\( V \)[/tex] of a pyramid is given by:
[tex]\[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]
4. Determine the base area:
The base area of the square is:
[tex]\[ \text{Base Area} = s^2 \][/tex]
5. Substitute the base area and height into the volume formula:
[tex]\[ V = \frac{1}{3} \times s^2 \times \frac{2}{3}s \][/tex]
6. Simplify the volume expression:
[tex]\[ V = \frac{1}{3} \times s^2 \times \frac{2}{3}s = \frac{1}{3} \times \frac{2}{3} \times s^3 \][/tex]
[tex]\[ V = \frac{2}{9} s^3 \][/tex]
The correct simplified expression for the volume of the pyramid is thus:
[tex]\[ V = \frac{2}{9} s^3 \][/tex]
Upon closely comparing with the given options, none matches exactly.
However, since the closest option appears to be incorrect in representing our exact value [tex]\(\frac{2}{9} s^3\)[/tex], this problem's answer seemingly is unincluded. Nonetheless, understanding the simplicity for the right expression governs understanding steps clearly aligning correct algebra.
1. Identify the formulas and given values:
- The base of the pyramid is a square with side length [tex]\( s \)[/tex].
- The height of the pyramid [tex]\( h \)[/tex] is given as [tex]\(\frac{2}{3}\)[/tex] of the side length [tex]\( s \)[/tex].
2. Calculate the height [tex]\( h \)[/tex]:
[tex]\[ h = \frac{2}{3}s \][/tex]
3. Formula for the volume of the pyramid:
The volume [tex]\( V \)[/tex] of a pyramid is given by:
[tex]\[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]
4. Determine the base area:
The base area of the square is:
[tex]\[ \text{Base Area} = s^2 \][/tex]
5. Substitute the base area and height into the volume formula:
[tex]\[ V = \frac{1}{3} \times s^2 \times \frac{2}{3}s \][/tex]
6. Simplify the volume expression:
[tex]\[ V = \frac{1}{3} \times s^2 \times \frac{2}{3}s = \frac{1}{3} \times \frac{2}{3} \times s^3 \][/tex]
[tex]\[ V = \frac{2}{9} s^3 \][/tex]
The correct simplified expression for the volume of the pyramid is thus:
[tex]\[ V = \frac{2}{9} s^3 \][/tex]
Upon closely comparing with the given options, none matches exactly.
However, since the closest option appears to be incorrect in representing our exact value [tex]\(\frac{2}{9} s^3\)[/tex], this problem's answer seemingly is unincluded. Nonetheless, understanding the simplicity for the right expression governs understanding steps clearly aligning correct algebra.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.