Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the solution for the equation [tex]\(\cot \frac{x}{2} = 0\)[/tex], let's carefully analyze the behavior of the cotangent function.
1. Understanding [tex]\(\cot \theta\)[/tex]:
- The cotangent function, [tex]\(\cot \theta\)[/tex], is defined as [tex]\(\cot \theta = \frac{1}{\tan \theta}\)[/tex].
- [tex]\(\cot \theta\)[/tex] is zero when [tex]\(\tan \theta\)[/tex] approaches infinity, meaning that [tex]\(\tan \theta\)[/tex] should be undefined or have vertical asymptotes.
2. Setting up the Equation:
- The equation becomes [tex]\(\cot \frac{x}{2} = 0\)[/tex]. This implies that [tex]\(\tan \left(\frac{x}{2}\right)\)[/tex] must be undefined.
- [tex]\(\tan \theta\)[/tex] is undefined when [tex]\(\theta = \frac{\pi}{2} + n\pi\)[/tex], where [tex]\(n\)[/tex] is any integer.
3. Determining Specific Solutions:
- For [tex]\(\cot \frac{x}{2} = 0\)[/tex], [tex]\(\frac{x}{2} = \frac{\pi}{2} + n\pi\)[/tex].
- Solving for [tex]\(x\)[/tex], we get [tex]\(x = \pi + 2n\pi = (2n+1)\pi\)[/tex].
4. Matching Given Options to [tex]\(x\)[/tex]:
- We need to check which of the given options satisfy this:
[tex]\[ \begin{aligned} \text{A. } & \frac{3\pi}{4} \implies \frac{x}{2} = \frac{3\pi}{8} & \text{(Does not match \(\frac{\pi}{2} + n\pi\))}\\ \text{B. } & \frac{3\pi}{2} \implies \frac{x}{2} = \frac{3\pi}{4} & \text{(Does not match \(\frac{\pi}{2} + n\pi\))}\\ \text{C. } & \frac{\pi}{2} \implies \frac{x}{2} = \frac{\pi}{4} & \text{(Does not match \(\frac{\pi}{2} + n\pi\))}\\ \text{D. } & 3\pi \implies \frac{x}{2} = \frac{3\pi}{2} & \text{(Matches \(\frac{3\pi}{2} = \frac{\pi}{2} + \pi\))} \end{aligned} \][/tex]
Choice D ([tex]\(3\pi\)[/tex]) satisfies the given equation. Therefore, the solution to the equation [tex]\(\cot \frac{x}{2} = 0\)[/tex] is:
[tex]\[ \boxed{3\pi} \][/tex]
1. Understanding [tex]\(\cot \theta\)[/tex]:
- The cotangent function, [tex]\(\cot \theta\)[/tex], is defined as [tex]\(\cot \theta = \frac{1}{\tan \theta}\)[/tex].
- [tex]\(\cot \theta\)[/tex] is zero when [tex]\(\tan \theta\)[/tex] approaches infinity, meaning that [tex]\(\tan \theta\)[/tex] should be undefined or have vertical asymptotes.
2. Setting up the Equation:
- The equation becomes [tex]\(\cot \frac{x}{2} = 0\)[/tex]. This implies that [tex]\(\tan \left(\frac{x}{2}\right)\)[/tex] must be undefined.
- [tex]\(\tan \theta\)[/tex] is undefined when [tex]\(\theta = \frac{\pi}{2} + n\pi\)[/tex], where [tex]\(n\)[/tex] is any integer.
3. Determining Specific Solutions:
- For [tex]\(\cot \frac{x}{2} = 0\)[/tex], [tex]\(\frac{x}{2} = \frac{\pi}{2} + n\pi\)[/tex].
- Solving for [tex]\(x\)[/tex], we get [tex]\(x = \pi + 2n\pi = (2n+1)\pi\)[/tex].
4. Matching Given Options to [tex]\(x\)[/tex]:
- We need to check which of the given options satisfy this:
[tex]\[ \begin{aligned} \text{A. } & \frac{3\pi}{4} \implies \frac{x}{2} = \frac{3\pi}{8} & \text{(Does not match \(\frac{\pi}{2} + n\pi\))}\\ \text{B. } & \frac{3\pi}{2} \implies \frac{x}{2} = \frac{3\pi}{4} & \text{(Does not match \(\frac{\pi}{2} + n\pi\))}\\ \text{C. } & \frac{\pi}{2} \implies \frac{x}{2} = \frac{\pi}{4} & \text{(Does not match \(\frac{\pi}{2} + n\pi\))}\\ \text{D. } & 3\pi \implies \frac{x}{2} = \frac{3\pi}{2} & \text{(Matches \(\frac{3\pi}{2} = \frac{\pi}{2} + \pi\))} \end{aligned} \][/tex]
Choice D ([tex]\(3\pi\)[/tex]) satisfies the given equation. Therefore, the solution to the equation [tex]\(\cot \frac{x}{2} = 0\)[/tex] is:
[tex]\[ \boxed{3\pi} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.