Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

## Sagot :

1.

**Understanding [tex]\(\cot \theta\)[/tex]**:

- The cotangent function, [tex]\(\cot \theta\)[/tex], is defined as [tex]\(\cot \theta = \frac{1}{\tan \theta}\)[/tex].

- [tex]\(\cot \theta\)[/tex] is zero when [tex]\(\tan \theta\)[/tex] approaches infinity, meaning that [tex]\(\tan \theta\)[/tex] should be undefined or have vertical asymptotes.

2.

**Setting up the Equation**:

- The equation becomes [tex]\(\cot \frac{x}{2} = 0\)[/tex]. This implies that [tex]\(\tan \left(\frac{x}{2}\right)\)[/tex] must be undefined.

- [tex]\(\tan \theta\)[/tex] is undefined when [tex]\(\theta = \frac{\pi}{2} + n\pi\)[/tex], where [tex]\(n\)[/tex] is any integer.

3.

**Determining Specific Solutions**:

- For [tex]\(\cot \frac{x}{2} = 0\)[/tex], [tex]\(\frac{x}{2} = \frac{\pi}{2} + n\pi\)[/tex].

- Solving for [tex]\(x\)[/tex], we get [tex]\(x = \pi + 2n\pi = (2n+1)\pi\)[/tex].

4.

**Matching Given Options to [tex]\(x\)[/tex]**:

- We need to check which of the given options satisfy this:

[tex]\[ \begin{aligned} \text{A. } & \frac{3\pi}{4} \implies \frac{x}{2} = \frac{3\pi}{8} & \text{(Does not match \(\frac{\pi}{2} + n\pi\))}\\ \text{B. } & \frac{3\pi}{2} \implies \frac{x}{2} = \frac{3\pi}{4} & \text{(Does not match \(\frac{\pi}{2} + n\pi\))}\\ \text{C. } & \frac{\pi}{2} \implies \frac{x}{2} = \frac{\pi}{4} & \text{(Does not match \(\frac{\pi}{2} + n\pi\))}\\ \text{D. } & 3\pi \implies \frac{x}{2} = \frac{3\pi}{2} & \text{(Matches \(\frac{3\pi}{2} = \frac{\pi}{2} + \pi\))} \end{aligned} \][/tex]

Choice D ([tex]\(3\pi\)[/tex]) satisfies the given equation. Therefore, the solution to the equation [tex]\(\cot \frac{x}{2} = 0\)[/tex] is:

[tex]\[ \boxed{3\pi} \][/tex]