Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's solve this step-by-step using the gravitational force formula.
The gravitational force between two masses [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] separated by a distance [tex]\( r \)[/tex] is given by Newton's law of gravitation:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of the first object,
- [tex]\( m_2 \)[/tex] is the mass of the second object,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Given the values:
- [tex]\( F = 1.05 \times 10^{-4} \, \text{N} \)[/tex]
- [tex]\( r = 100,000 \, \text{m} \)[/tex]
- [tex]\( m_1 = 3.5 \times 10^6 \, \text{kg} \)[/tex]
We need to find [tex]\( m_2 \)[/tex].
First, rearrange the formula to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]
Now substitute the given values into the equation:
[tex]\[ m_2 = \frac{1.05 \times 10^{-4} \cdot (100,000)^2}{6.67430 \times 10^{-11} \cdot 3.5 \times 10^6} \][/tex]
Perform the calculations step-by-step:
1. Calculate [tex]\( r^2 \)[/tex]:
[tex]\[ (100,000)^2 = 10^{10} \][/tex]
2. Multiply [tex]\( F \)[/tex] by [tex]\( r^2 \)[/tex]:
[tex]\[ 1.05 \times 10^{-4} \times 10^{10} = 1.05 \times 10^6 \][/tex]
3. Calculate [tex]\( G \cdot m_1 \)[/tex]:
[tex]\[ 6.67430 \times 10^{-11} \times 3.5 \times 10^6 = 2.335005 \times 10^{-4} \][/tex]
4. Divide the results:
[tex]\[ m_2 = \frac{1.05 \times 10^6}{2.335005 \times 10^{-4}} \][/tex]
5. Simplify the division:
[tex]\[ m_2 \approx 4494853392.8651705 \][/tex]
Therefore, the mass [tex]\( m_2 \)[/tex] of the second asteroid is approximately [tex]\( 4.49 \times 10^9 \, \text{kg} \)[/tex].
Looking at the options provided:
A. [tex]\( 4.1 \times 10^9 \, \text{kg} \)[/tex]
B. [tex]\( 4.5 \times 10^9 \, \text{kg} \)[/tex]
C. [tex]\( 4.1 \times 10^8 \, \text{kg} \)[/tex]
D. [tex]\( 4.5 \times 10^8 \, \text{kg} \)[/tex]
The closest value is B. [tex]\( 4.5 \times 10^9 \, \text{kg} \)[/tex].
Thus, the mass of the other asteroid is [tex]\( 4.5 \times 10^9 \, \text{kg} \)[/tex].
The gravitational force between two masses [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] separated by a distance [tex]\( r \)[/tex] is given by Newton's law of gravitation:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of the first object,
- [tex]\( m_2 \)[/tex] is the mass of the second object,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Given the values:
- [tex]\( F = 1.05 \times 10^{-4} \, \text{N} \)[/tex]
- [tex]\( r = 100,000 \, \text{m} \)[/tex]
- [tex]\( m_1 = 3.5 \times 10^6 \, \text{kg} \)[/tex]
We need to find [tex]\( m_2 \)[/tex].
First, rearrange the formula to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]
Now substitute the given values into the equation:
[tex]\[ m_2 = \frac{1.05 \times 10^{-4} \cdot (100,000)^2}{6.67430 \times 10^{-11} \cdot 3.5 \times 10^6} \][/tex]
Perform the calculations step-by-step:
1. Calculate [tex]\( r^2 \)[/tex]:
[tex]\[ (100,000)^2 = 10^{10} \][/tex]
2. Multiply [tex]\( F \)[/tex] by [tex]\( r^2 \)[/tex]:
[tex]\[ 1.05 \times 10^{-4} \times 10^{10} = 1.05 \times 10^6 \][/tex]
3. Calculate [tex]\( G \cdot m_1 \)[/tex]:
[tex]\[ 6.67430 \times 10^{-11} \times 3.5 \times 10^6 = 2.335005 \times 10^{-4} \][/tex]
4. Divide the results:
[tex]\[ m_2 = \frac{1.05 \times 10^6}{2.335005 \times 10^{-4}} \][/tex]
5. Simplify the division:
[tex]\[ m_2 \approx 4494853392.8651705 \][/tex]
Therefore, the mass [tex]\( m_2 \)[/tex] of the second asteroid is approximately [tex]\( 4.49 \times 10^9 \, \text{kg} \)[/tex].
Looking at the options provided:
A. [tex]\( 4.1 \times 10^9 \, \text{kg} \)[/tex]
B. [tex]\( 4.5 \times 10^9 \, \text{kg} \)[/tex]
C. [tex]\( 4.1 \times 10^8 \, \text{kg} \)[/tex]
D. [tex]\( 4.5 \times 10^8 \, \text{kg} \)[/tex]
The closest value is B. [tex]\( 4.5 \times 10^9 \, \text{kg} \)[/tex].
Thus, the mass of the other asteroid is [tex]\( 4.5 \times 10^9 \, \text{kg} \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.