Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's solve this step-by-step using the gravitational force formula.
The gravitational force between two masses [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] separated by a distance [tex]\( r \)[/tex] is given by Newton's law of gravitation:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of the first object,
- [tex]\( m_2 \)[/tex] is the mass of the second object,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Given the values:
- [tex]\( F = 1.05 \times 10^{-4} \, \text{N} \)[/tex]
- [tex]\( r = 100,000 \, \text{m} \)[/tex]
- [tex]\( m_1 = 3.5 \times 10^6 \, \text{kg} \)[/tex]
We need to find [tex]\( m_2 \)[/tex].
First, rearrange the formula to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]
Now substitute the given values into the equation:
[tex]\[ m_2 = \frac{1.05 \times 10^{-4} \cdot (100,000)^2}{6.67430 \times 10^{-11} \cdot 3.5 \times 10^6} \][/tex]
Perform the calculations step-by-step:
1. Calculate [tex]\( r^2 \)[/tex]:
[tex]\[ (100,000)^2 = 10^{10} \][/tex]
2. Multiply [tex]\( F \)[/tex] by [tex]\( r^2 \)[/tex]:
[tex]\[ 1.05 \times 10^{-4} \times 10^{10} = 1.05 \times 10^6 \][/tex]
3. Calculate [tex]\( G \cdot m_1 \)[/tex]:
[tex]\[ 6.67430 \times 10^{-11} \times 3.5 \times 10^6 = 2.335005 \times 10^{-4} \][/tex]
4. Divide the results:
[tex]\[ m_2 = \frac{1.05 \times 10^6}{2.335005 \times 10^{-4}} \][/tex]
5. Simplify the division:
[tex]\[ m_2 \approx 4494853392.8651705 \][/tex]
Therefore, the mass [tex]\( m_2 \)[/tex] of the second asteroid is approximately [tex]\( 4.49 \times 10^9 \, \text{kg} \)[/tex].
Looking at the options provided:
A. [tex]\( 4.1 \times 10^9 \, \text{kg} \)[/tex]
B. [tex]\( 4.5 \times 10^9 \, \text{kg} \)[/tex]
C. [tex]\( 4.1 \times 10^8 \, \text{kg} \)[/tex]
D. [tex]\( 4.5 \times 10^8 \, \text{kg} \)[/tex]
The closest value is B. [tex]\( 4.5 \times 10^9 \, \text{kg} \)[/tex].
Thus, the mass of the other asteroid is [tex]\( 4.5 \times 10^9 \, \text{kg} \)[/tex].
The gravitational force between two masses [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] separated by a distance [tex]\( r \)[/tex] is given by Newton's law of gravitation:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of the first object,
- [tex]\( m_2 \)[/tex] is the mass of the second object,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Given the values:
- [tex]\( F = 1.05 \times 10^{-4} \, \text{N} \)[/tex]
- [tex]\( r = 100,000 \, \text{m} \)[/tex]
- [tex]\( m_1 = 3.5 \times 10^6 \, \text{kg} \)[/tex]
We need to find [tex]\( m_2 \)[/tex].
First, rearrange the formula to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]
Now substitute the given values into the equation:
[tex]\[ m_2 = \frac{1.05 \times 10^{-4} \cdot (100,000)^2}{6.67430 \times 10^{-11} \cdot 3.5 \times 10^6} \][/tex]
Perform the calculations step-by-step:
1. Calculate [tex]\( r^2 \)[/tex]:
[tex]\[ (100,000)^2 = 10^{10} \][/tex]
2. Multiply [tex]\( F \)[/tex] by [tex]\( r^2 \)[/tex]:
[tex]\[ 1.05 \times 10^{-4} \times 10^{10} = 1.05 \times 10^6 \][/tex]
3. Calculate [tex]\( G \cdot m_1 \)[/tex]:
[tex]\[ 6.67430 \times 10^{-11} \times 3.5 \times 10^6 = 2.335005 \times 10^{-4} \][/tex]
4. Divide the results:
[tex]\[ m_2 = \frac{1.05 \times 10^6}{2.335005 \times 10^{-4}} \][/tex]
5. Simplify the division:
[tex]\[ m_2 \approx 4494853392.8651705 \][/tex]
Therefore, the mass [tex]\( m_2 \)[/tex] of the second asteroid is approximately [tex]\( 4.49 \times 10^9 \, \text{kg} \)[/tex].
Looking at the options provided:
A. [tex]\( 4.1 \times 10^9 \, \text{kg} \)[/tex]
B. [tex]\( 4.5 \times 10^9 \, \text{kg} \)[/tex]
C. [tex]\( 4.1 \times 10^8 \, \text{kg} \)[/tex]
D. [tex]\( 4.5 \times 10^8 \, \text{kg} \)[/tex]
The closest value is B. [tex]\( 4.5 \times 10^9 \, \text{kg} \)[/tex].
Thus, the mass of the other asteroid is [tex]\( 4.5 \times 10^9 \, \text{kg} \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.