Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's determine the vertical asymptotes of the given function [tex]\( f(x) = \frac{14}{(x-5)(x+1)} \)[/tex].
Vertical asymptotes occur where the denominator of the fraction goes to zero, as the function value approaches infinity or negative infinity at these points.
1. Identify the Denominator:
The denominator of [tex]\( f(x) \)[/tex] is [tex]\( (x-5)(x+1) \)[/tex].
2. Set the Denominator Equal to Zero:
To find the vertical asymptotes, we need to solve the equation [tex]\( (x-5)(x+1) = 0 \)[/tex].
3. Solve for [tex]\( x \)[/tex]:
- First, set each factor of the denominator equal to zero separately:
[tex]\[ x - 5 = 0 \quad \text{and} \quad x + 1 = 0 \][/tex]
- Solving these equations gives:
[tex]\[ x = 5 \quad \text{and} \quad x = -1 \][/tex]
These values of [tex]\( x \)[/tex] are where the vertical asymptotes of [tex]\( f(x) \)[/tex] are located. Thus, the vertical asymptotes for the function [tex]\( f(x) = \frac{14}{(x-5)(x+1)} \)[/tex] are at [tex]\( x = 5 \)[/tex] and [tex]\( x = -1 \)[/tex].
Therefore, the correct answer is:
[tex]\[ x = -1 \quad \text{and} \quad x = 5 \][/tex]
Vertical asymptotes occur where the denominator of the fraction goes to zero, as the function value approaches infinity or negative infinity at these points.
1. Identify the Denominator:
The denominator of [tex]\( f(x) \)[/tex] is [tex]\( (x-5)(x+1) \)[/tex].
2. Set the Denominator Equal to Zero:
To find the vertical asymptotes, we need to solve the equation [tex]\( (x-5)(x+1) = 0 \)[/tex].
3. Solve for [tex]\( x \)[/tex]:
- First, set each factor of the denominator equal to zero separately:
[tex]\[ x - 5 = 0 \quad \text{and} \quad x + 1 = 0 \][/tex]
- Solving these equations gives:
[tex]\[ x = 5 \quad \text{and} \quad x = -1 \][/tex]
These values of [tex]\( x \)[/tex] are where the vertical asymptotes of [tex]\( f(x) \)[/tex] are located. Thus, the vertical asymptotes for the function [tex]\( f(x) = \frac{14}{(x-5)(x+1)} \)[/tex] are at [tex]\( x = 5 \)[/tex] and [tex]\( x = -1 \)[/tex].
Therefore, the correct answer is:
[tex]\[ x = -1 \quad \text{and} \quad x = 5 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.