Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the value of [tex]\( g \)[/tex] for a 30-sided regular polygon where the interior angle is given as [tex]\( 6g \)[/tex] degrees, we can follow these steps:
1. Determine the Measure of an Interior Angle:
The formula to find the sum of the interior angles of an [tex]\( n \)[/tex]-sided polygon is:
[tex]\[ \text{Sum of interior angles} = (n - 2) \times 180^\circ \][/tex]
For a polygon with 30 sides ([tex]\( n = 30 \)[/tex]):
[tex]\[ \text{Sum of interior angles} = (30 - 2) \times 180^\circ = 28 \times 180^\circ = 5040^\circ \][/tex]
Since it is a regular polygon, all interior angles are equal. Therefore, the measure of one interior angle is:
[tex]\[ \text{Interior angle} = \frac{\text{Sum of interior angles}}{n} = \frac{5040^\circ}{30} = 168^\circ \][/tex]
2. Set Up the Equation:
We know the interior angle is represented as [tex]\( 6g \)[/tex] degrees. Thus:
[tex]\[ 6g = 168^\circ \][/tex]
3. Solve for [tex]\( g \)[/tex]:
Divide both sides of the equation by 6:
[tex]\[ g = \frac{168^\circ}{6} = 28 \][/tex]
Thus, the value of [tex]\( g \)[/tex] is [tex]\( \boxed{28} \)[/tex].
1. Determine the Measure of an Interior Angle:
The formula to find the sum of the interior angles of an [tex]\( n \)[/tex]-sided polygon is:
[tex]\[ \text{Sum of interior angles} = (n - 2) \times 180^\circ \][/tex]
For a polygon with 30 sides ([tex]\( n = 30 \)[/tex]):
[tex]\[ \text{Sum of interior angles} = (30 - 2) \times 180^\circ = 28 \times 180^\circ = 5040^\circ \][/tex]
Since it is a regular polygon, all interior angles are equal. Therefore, the measure of one interior angle is:
[tex]\[ \text{Interior angle} = \frac{\text{Sum of interior angles}}{n} = \frac{5040^\circ}{30} = 168^\circ \][/tex]
2. Set Up the Equation:
We know the interior angle is represented as [tex]\( 6g \)[/tex] degrees. Thus:
[tex]\[ 6g = 168^\circ \][/tex]
3. Solve for [tex]\( g \)[/tex]:
Divide both sides of the equation by 6:
[tex]\[ g = \frac{168^\circ}{6} = 28 \][/tex]
Thus, the value of [tex]\( g \)[/tex] is [tex]\( \boxed{28} \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.