Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the arithmetic progression (AP) whose 3rd term is 5 and 7th term is 9, let's denote the first term of the AP by [tex]\( a \)[/tex] and the common difference by [tex]\( d \)[/tex].
The formula for the [tex]\( n \)[/tex]-th term of an AP is given by:
[tex]\[ a_n = a + (n-1)d \][/tex]
1. Finding the 3rd Term:
The 3rd term of the AP is given by:
[tex]\[ a_3 = a + 2d \][/tex]
It is given that the 3rd term is 5. Therefore:
[tex]\[ a + 2d = 5 \quad \text{(Equation 1)} \][/tex]
2. Finding the 7th Term:
The 7th term of the AP is given by:
[tex]\[ a_7 = a + 6d \][/tex]
It is given that the 7th term is 9. Therefore:
[tex]\[ a + 6d = 9 \quad \text{(Equation 2)} \][/tex]
3. Solving the System of Equations:
We have the system of linear equations:
1. [tex]\( a + 2d = 5 \)[/tex]
2. [tex]\( a + 6d = 9 \)[/tex]
To eliminate [tex]\( a \)[/tex], we subtract Equation 1 from Equation 2:
[tex]\[ (a + 6d) - (a + 2d) = 9 - 5 \][/tex]
Simplifying this, we get:
[tex]\[ 4d = 4 \implies d = 1 \][/tex]
With [tex]\( d \)[/tex] known, substitute [tex]\( d = 1 \)[/tex] back into Equation 1 to find [tex]\( a \)[/tex]:
[tex]\[ a + 2(1) = 5 \implies a + 2 = 5 \implies a = 3 \][/tex]
4. Determining the AP:
Now we have the first term [tex]\( a = 3 \)[/tex] and the common difference [tex]\( d = 1 \)[/tex].
Therefore, the arithmetic progression (AP) is defined by the first term [tex]\( a = 3 \)[/tex] and the common difference [tex]\( d = 1 \)[/tex].
The formula for the [tex]\( n \)[/tex]-th term of an AP is given by:
[tex]\[ a_n = a + (n-1)d \][/tex]
1. Finding the 3rd Term:
The 3rd term of the AP is given by:
[tex]\[ a_3 = a + 2d \][/tex]
It is given that the 3rd term is 5. Therefore:
[tex]\[ a + 2d = 5 \quad \text{(Equation 1)} \][/tex]
2. Finding the 7th Term:
The 7th term of the AP is given by:
[tex]\[ a_7 = a + 6d \][/tex]
It is given that the 7th term is 9. Therefore:
[tex]\[ a + 6d = 9 \quad \text{(Equation 2)} \][/tex]
3. Solving the System of Equations:
We have the system of linear equations:
1. [tex]\( a + 2d = 5 \)[/tex]
2. [tex]\( a + 6d = 9 \)[/tex]
To eliminate [tex]\( a \)[/tex], we subtract Equation 1 from Equation 2:
[tex]\[ (a + 6d) - (a + 2d) = 9 - 5 \][/tex]
Simplifying this, we get:
[tex]\[ 4d = 4 \implies d = 1 \][/tex]
With [tex]\( d \)[/tex] known, substitute [tex]\( d = 1 \)[/tex] back into Equation 1 to find [tex]\( a \)[/tex]:
[tex]\[ a + 2(1) = 5 \implies a + 2 = 5 \implies a = 3 \][/tex]
4. Determining the AP:
Now we have the first term [tex]\( a = 3 \)[/tex] and the common difference [tex]\( d = 1 \)[/tex].
Therefore, the arithmetic progression (AP) is defined by the first term [tex]\( a = 3 \)[/tex] and the common difference [tex]\( d = 1 \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.