Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine Saturn's distance from the sun, denoted as [tex]\( a \)[/tex], given its orbital period [tex]\( P \)[/tex] of 29.5 years, we can use the relation:
[tex]\[ P = a^{\frac{3}{2}} \][/tex]
We need to solve for [tex]\( a \)[/tex] when [tex]\( P = 29.5 \)[/tex]. Here are the steps to find [tex]\( a \)[/tex]:
1. Formula Setup: We start with the equation:
[tex]\[ 29.5 = a^{\frac{3}{2}} \][/tex]
2. Isolate [tex]\( a \)[/tex]: To isolate [tex]\( a \)[/tex], we need to undo the exponent [tex]\(\frac{3}{2}\)[/tex]. To do this, we raise both sides of the equation to the power of [tex]\(\frac{2}{3}\)[/tex]. This is because:
[tex]\[ \left(a^{\frac{3}{2}}\right)^{\frac{2}{3}} = a^{\left(\frac{3}{2} \cdot \frac{2}{3}\right)} = a \][/tex]
So, applying this to both sides of the equation:
[tex]\[ \left(29.5\right)^{\frac{2}{3}} = a \][/tex]
3. Calculate [tex]\( a \)[/tex]: Given the true result, [tex]\(\left(29.5\right)^{\frac{2}{3}}\)[/tex] is approximately equal to 9.547. Thus:
[tex]\[ a \approx 9.547 \][/tex]
4. Round or approximate value: Generally, distances in astronomy are given to a few significant digits. Therefore, rounding 9.547 to the nearest value among the choices provided, we get approximately:
[tex]\[ a \approx 9.5 \text{ AU} \][/tex]
Therefore, Saturn's distance from the sun is approximately 9.5 AU.
The correct option is:
- [tex]\( \boxed{9.5 \text{ AU}} \)[/tex]
[tex]\[ P = a^{\frac{3}{2}} \][/tex]
We need to solve for [tex]\( a \)[/tex] when [tex]\( P = 29.5 \)[/tex]. Here are the steps to find [tex]\( a \)[/tex]:
1. Formula Setup: We start with the equation:
[tex]\[ 29.5 = a^{\frac{3}{2}} \][/tex]
2. Isolate [tex]\( a \)[/tex]: To isolate [tex]\( a \)[/tex], we need to undo the exponent [tex]\(\frac{3}{2}\)[/tex]. To do this, we raise both sides of the equation to the power of [tex]\(\frac{2}{3}\)[/tex]. This is because:
[tex]\[ \left(a^{\frac{3}{2}}\right)^{\frac{2}{3}} = a^{\left(\frac{3}{2} \cdot \frac{2}{3}\right)} = a \][/tex]
So, applying this to both sides of the equation:
[tex]\[ \left(29.5\right)^{\frac{2}{3}} = a \][/tex]
3. Calculate [tex]\( a \)[/tex]: Given the true result, [tex]\(\left(29.5\right)^{\frac{2}{3}}\)[/tex] is approximately equal to 9.547. Thus:
[tex]\[ a \approx 9.547 \][/tex]
4. Round or approximate value: Generally, distances in astronomy are given to a few significant digits. Therefore, rounding 9.547 to the nearest value among the choices provided, we get approximately:
[tex]\[ a \approx 9.5 \text{ AU} \][/tex]
Therefore, Saturn's distance from the sun is approximately 9.5 AU.
The correct option is:
- [tex]\( \boxed{9.5 \text{ AU}} \)[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.