Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure! Let's work through the problem step by step to find the location of the point on the number line that is [tex]\(\frac{2}{7}\)[/tex] of the way from [tex]\(A = 18\)[/tex] to [tex]\(B = 4\)[/tex].
1. Identify the positions of points A and B:
- [tex]\(A = 18\)[/tex]
- [tex]\(B = 4\)[/tex]
2. Calculate the distance from point A to point B:
[tex]\[ \text{Distance} = B - A = 4 - 18 = -14 \][/tex]
The distance is [tex]\(-14\)[/tex].
3. Determine the fraction of the distance:
We want to find the position that is [tex]\(\frac{2}{7}\)[/tex] of the way from [tex]\(A\)[/tex] to [tex]\(B\)[/tex].
4. Calculate the location of the point that is [tex]\(\frac{2}{7}\)[/tex] of the way from [tex]\(A\)[/tex] to [tex]\(B\)[/tex]:
[tex]\[ \text{Point Location} = A + \left( \frac{2}{7} \right) \times \text{Distance} = 18 + \left( \frac{2}{7} \right) \times (-14) \][/tex]
5. Simplify the expression:
[tex]\[ \text{Point Location} = 18 + \left( \frac{2}{7} \times -14 \right) \][/tex]
[tex]\[ \text{Point Location} = 18 + \left( \frac{2 \times (-14)}{7} \right) \][/tex]
[tex]\[ \text{Point Location} = 18 + \left( \frac{-28}{7} \right) \][/tex]
[tex]\[ \text{Point Location} = 18 + (-4) \][/tex]
[tex]\[ \text{Point Location} = 18 - 4 = 14 \][/tex]
So, the location of the point that is [tex]\(\frac{2}{7}\)[/tex] of the way from [tex]\(A = 18\)[/tex] to [tex]\(B = 4\)[/tex] is [tex]\(14\)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{14} \][/tex]
1. Identify the positions of points A and B:
- [tex]\(A = 18\)[/tex]
- [tex]\(B = 4\)[/tex]
2. Calculate the distance from point A to point B:
[tex]\[ \text{Distance} = B - A = 4 - 18 = -14 \][/tex]
The distance is [tex]\(-14\)[/tex].
3. Determine the fraction of the distance:
We want to find the position that is [tex]\(\frac{2}{7}\)[/tex] of the way from [tex]\(A\)[/tex] to [tex]\(B\)[/tex].
4. Calculate the location of the point that is [tex]\(\frac{2}{7}\)[/tex] of the way from [tex]\(A\)[/tex] to [tex]\(B\)[/tex]:
[tex]\[ \text{Point Location} = A + \left( \frac{2}{7} \right) \times \text{Distance} = 18 + \left( \frac{2}{7} \right) \times (-14) \][/tex]
5. Simplify the expression:
[tex]\[ \text{Point Location} = 18 + \left( \frac{2}{7} \times -14 \right) \][/tex]
[tex]\[ \text{Point Location} = 18 + \left( \frac{2 \times (-14)}{7} \right) \][/tex]
[tex]\[ \text{Point Location} = 18 + \left( \frac{-28}{7} \right) \][/tex]
[tex]\[ \text{Point Location} = 18 + (-4) \][/tex]
[tex]\[ \text{Point Location} = 18 - 4 = 14 \][/tex]
So, the location of the point that is [tex]\(\frac{2}{7}\)[/tex] of the way from [tex]\(A = 18\)[/tex] to [tex]\(B = 4\)[/tex] is [tex]\(14\)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{14} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.