Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure! To understand the expression [tex]\(\frac{x+5}{x^2-2}\)[/tex] more clearly, let's break it down step-by-step.
1. Identify the Numerator and Denominator:
- The numerator is the term on the top of the fraction, which is [tex]\(x + 5\)[/tex].
- The denominator is the term on the bottom of the fraction, which is [tex]\(x^2 - 2\)[/tex].
2. Definition of a Rational Function:
- A rational function is a function that can be expressed as the quotient (or division) of two polynomials. In this expression, both [tex]\(x+5\)[/tex] and [tex]\(x^2 - 2\)[/tex] are polynomials.
3. Quotient of Two Polynomials:
- The expression [tex]\(\frac{x+5}{x^2-2}\)[/tex] indicates that [tex]\(x+5\)[/tex] is being divided by [tex]\(x^2-2\)[/tex].
Therefore, the expression [tex]\(\frac{x+5}{x^2-2}\)[/tex] is accurately described as "the quotient of [tex]\(x+5\)[/tex] and [tex]\(x^2-2\)[/tex]."
So, the correct statement is:
C. The quotient of [tex]\(x + 5\)[/tex] and [tex]\(x^2 - 2\)[/tex].
This means that the fraction [tex]\(\frac{x+5}{x^2-2}\)[/tex] represents dividing the polynomial [tex]\(x+5\)[/tex] by the polynomial [tex]\(x^2-2\)[/tex].
1. Identify the Numerator and Denominator:
- The numerator is the term on the top of the fraction, which is [tex]\(x + 5\)[/tex].
- The denominator is the term on the bottom of the fraction, which is [tex]\(x^2 - 2\)[/tex].
2. Definition of a Rational Function:
- A rational function is a function that can be expressed as the quotient (or division) of two polynomials. In this expression, both [tex]\(x+5\)[/tex] and [tex]\(x^2 - 2\)[/tex] are polynomials.
3. Quotient of Two Polynomials:
- The expression [tex]\(\frac{x+5}{x^2-2}\)[/tex] indicates that [tex]\(x+5\)[/tex] is being divided by [tex]\(x^2-2\)[/tex].
Therefore, the expression [tex]\(\frac{x+5}{x^2-2}\)[/tex] is accurately described as "the quotient of [tex]\(x+5\)[/tex] and [tex]\(x^2-2\)[/tex]."
So, the correct statement is:
C. The quotient of [tex]\(x + 5\)[/tex] and [tex]\(x^2 - 2\)[/tex].
This means that the fraction [tex]\(\frac{x+5}{x^2-2}\)[/tex] represents dividing the polynomial [tex]\(x+5\)[/tex] by the polynomial [tex]\(x^2-2\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.