Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the vertical asymptotes of the function
[tex]\[ f(x)=\frac{x^2+4}{4 x^2-4 x-8}, \][/tex]
we need to identify the values of [tex]\( x \)[/tex] that make the denominator equal to zero since these will cause the function to be undefined.
First, we start with the denominator:
[tex]\[ 4 x^2 - 4 x - 8 = 0. \][/tex]
This is a quadratic equation, and we can solve for [tex]\( x \)[/tex] using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \][/tex]
where [tex]\( a = 4 \)[/tex], [tex]\( b = -4 \)[/tex], and [tex]\( c = -8 \)[/tex].
First, calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac = (-4)^2 - 4 \cdot 4 \cdot (-8) = 16 + 128 = 144. \][/tex]
Next, take the square root of the discriminant:
[tex]\[ \sqrt{\text{Discriminant}} = \sqrt{144} = 12. \][/tex]
Now, apply the quadratic formula:
[tex]\[ x = \frac{-(-4) \pm 12}{2 \cdot 4} = \frac{4 \pm 12}{8}. \][/tex]
This gives us two solutions:
[tex]\[ x_1 = \frac{4 + 12}{8} = \frac{16}{8} = 2, \][/tex]
[tex]\[ x_2 = \frac{4 - 12}{8} = \frac{-8}{8} = -1. \][/tex]
Hence, the vertical asymptotes of the function [tex]\( f(x) \)[/tex] are [tex]\( x = 2 \)[/tex] and [tex]\( x = -1 \)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{x=-1 \text{ and } x=2} \][/tex]
[tex]\[ f(x)=\frac{x^2+4}{4 x^2-4 x-8}, \][/tex]
we need to identify the values of [tex]\( x \)[/tex] that make the denominator equal to zero since these will cause the function to be undefined.
First, we start with the denominator:
[tex]\[ 4 x^2 - 4 x - 8 = 0. \][/tex]
This is a quadratic equation, and we can solve for [tex]\( x \)[/tex] using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \][/tex]
where [tex]\( a = 4 \)[/tex], [tex]\( b = -4 \)[/tex], and [tex]\( c = -8 \)[/tex].
First, calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac = (-4)^2 - 4 \cdot 4 \cdot (-8) = 16 + 128 = 144. \][/tex]
Next, take the square root of the discriminant:
[tex]\[ \sqrt{\text{Discriminant}} = \sqrt{144} = 12. \][/tex]
Now, apply the quadratic formula:
[tex]\[ x = \frac{-(-4) \pm 12}{2 \cdot 4} = \frac{4 \pm 12}{8}. \][/tex]
This gives us two solutions:
[tex]\[ x_1 = \frac{4 + 12}{8} = \frac{16}{8} = 2, \][/tex]
[tex]\[ x_2 = \frac{4 - 12}{8} = \frac{-8}{8} = -1. \][/tex]
Hence, the vertical asymptotes of the function [tex]\( f(x) \)[/tex] are [tex]\( x = 2 \)[/tex] and [tex]\( x = -1 \)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{x=-1 \text{ and } x=2} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.