Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the range of the function [tex]\( y = 4e^x \)[/tex], we need to understand how the function behaves as [tex]\( x \)[/tex] varies over all real numbers.
1. Understanding the exponential function [tex]\( e^x \)[/tex]:
- The exponential function [tex]\( e^x \)[/tex] is always positive for all real [tex]\( x \)[/tex].
- As [tex]\( x \)[/tex] approaches negative infinity ([tex]\( x \to -\infty \)[/tex]), [tex]\( e^x \)[/tex] approaches 0.
- As [tex]\( x \)[/tex] approaches positive infinity ([tex]\( x \to \infty \)[/tex]), [tex]\( e^x \)[/tex] approaches infinity.
2. Applying the behavior of [tex]\( e^x \)[/tex] to [tex]\( y = 4e^x \)[/tex]:
- Since [tex]\( y = 4e^x \)[/tex], the value of [tex]\( y \)[/tex] will be 4 times the value of [tex]\( e^x \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( e^x \)[/tex] approaches 0, thus [tex]\( y \)[/tex] approaches [tex]\( 4 \times 0 = 0 \)[/tex].
- As [tex]\( x \to \infty \)[/tex], [tex]\( e^x \)[/tex] approaches infinity, thus [tex]\( y \)[/tex] approaches [tex]\( 4 \times \infty = \infty \)[/tex].
3. Range of [tex]\( y = 4e^x \)[/tex]:
- Since [tex]\( y \)[/tex] approaches 0 but never actually reaches 0, the smallest value for [tex]\( y \)[/tex] is greater than 0.
- Since [tex]\( y \)[/tex] can grow without bound as [tex]\( x \)[/tex] increases, the values of [tex]\( y \)[/tex] are all positive numbers greater than 0.
Therefore, the range of the function [tex]\( y = 4e^x \)[/tex] is all real numbers greater than 0.
[tex]\[ \text{The range of the function } y = 4e^x \text{ is all real numbers greater than 0.} \][/tex]
1. Understanding the exponential function [tex]\( e^x \)[/tex]:
- The exponential function [tex]\( e^x \)[/tex] is always positive for all real [tex]\( x \)[/tex].
- As [tex]\( x \)[/tex] approaches negative infinity ([tex]\( x \to -\infty \)[/tex]), [tex]\( e^x \)[/tex] approaches 0.
- As [tex]\( x \)[/tex] approaches positive infinity ([tex]\( x \to \infty \)[/tex]), [tex]\( e^x \)[/tex] approaches infinity.
2. Applying the behavior of [tex]\( e^x \)[/tex] to [tex]\( y = 4e^x \)[/tex]:
- Since [tex]\( y = 4e^x \)[/tex], the value of [tex]\( y \)[/tex] will be 4 times the value of [tex]\( e^x \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( e^x \)[/tex] approaches 0, thus [tex]\( y \)[/tex] approaches [tex]\( 4 \times 0 = 0 \)[/tex].
- As [tex]\( x \to \infty \)[/tex], [tex]\( e^x \)[/tex] approaches infinity, thus [tex]\( y \)[/tex] approaches [tex]\( 4 \times \infty = \infty \)[/tex].
3. Range of [tex]\( y = 4e^x \)[/tex]:
- Since [tex]\( y \)[/tex] approaches 0 but never actually reaches 0, the smallest value for [tex]\( y \)[/tex] is greater than 0.
- Since [tex]\( y \)[/tex] can grow without bound as [tex]\( x \)[/tex] increases, the values of [tex]\( y \)[/tex] are all positive numbers greater than 0.
Therefore, the range of the function [tex]\( y = 4e^x \)[/tex] is all real numbers greater than 0.
[tex]\[ \text{The range of the function } y = 4e^x \text{ is all real numbers greater than 0.} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.