At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine a counterexample for the conditional statement, "If a square has side length [tex]\( s \)[/tex], then the perimeter is less than the area," we'll analyze the perimeters and areas of squares with given side lengths [tex]\( s = 3, 5, 7, \)[/tex] and [tex]\( 9 \)[/tex].
1. Determine the perimeter and area for each side length:
For a square with side length [tex]\( s \)[/tex]:
- The perimeter [tex]\( P \)[/tex] is given by [tex]\( P = 4s \)[/tex].
- The area [tex]\( A \)[/tex] is given by [tex]\( A = s^2 \)[/tex].
2. Calculate the perimeters and areas:
- For [tex]\( s = 3 \)[/tex]:
[tex]\[ P = 4 \times 3 = 12 \][/tex]
[tex]\[ A = 3^2 = 9 \][/tex]
- For [tex]\( s = 5 \)[/tex]:
[tex]\[ P = 4 \times 5 = 20 \][/tex]
[tex]\[ A = 5^2 = 25 \][/tex]
- For [tex]\( s = 7 \)[/tex]:
[tex]\[ P = 4 \times 7 = 28 \][/tex]
[tex]\[ A = 7^2 = 49 \][/tex]
- For [tex]\( s = 9 \)[/tex]:
[tex]\[ P = 4 \times 9 = 36 \][/tex]
[tex]\[ A = 9^2 = 81 \][/tex]
3. Compare the perimeter and area for each side length:
- For [tex]\( s = 3 \)[/tex]:
[tex]\[ P = 12 \quad \text{and} \quad A = 9 \][/tex]
Here, [tex]\( P \geq A \)[/tex]. (In fact, [tex]\( P > A \)[/tex])
- For [tex]\( s = 5 \)[/tex]:
[tex]\[ P = 20 \quad \text{and} \quad A = 25 \][/tex]
Here, [tex]\( P < A \)[/tex].
- For [tex]\( s = 7 \)[/tex]:
[tex]\[ P = 28 \quad \text{and} \quad A = 49 \][/tex]
Here, [tex]\( P < A \)[/tex].
- For [tex]\( s = 9 \)[/tex]:
[tex]\[ P = 36 \quad \text{and} \quad A = 81 \][/tex]
Here, [tex]\( P < A \)[/tex].
4. Identify the counterexample:
We need to find a value of [tex]\( s \)[/tex] for which the perimeter [tex]\( P \)[/tex] is not less than the area [tex]\( A \)[/tex]. From the calculations above, we see that for [tex]\( s = 3 \)[/tex], the perimeter [tex]\( P = 12 \)[/tex] is greater than the area [tex]\( A = 9 \)[/tex].
Therefore, the counterexample to the conditional statement is:
[tex]\[ \boxed{s = 3} \][/tex]
1. Determine the perimeter and area for each side length:
For a square with side length [tex]\( s \)[/tex]:
- The perimeter [tex]\( P \)[/tex] is given by [tex]\( P = 4s \)[/tex].
- The area [tex]\( A \)[/tex] is given by [tex]\( A = s^2 \)[/tex].
2. Calculate the perimeters and areas:
- For [tex]\( s = 3 \)[/tex]:
[tex]\[ P = 4 \times 3 = 12 \][/tex]
[tex]\[ A = 3^2 = 9 \][/tex]
- For [tex]\( s = 5 \)[/tex]:
[tex]\[ P = 4 \times 5 = 20 \][/tex]
[tex]\[ A = 5^2 = 25 \][/tex]
- For [tex]\( s = 7 \)[/tex]:
[tex]\[ P = 4 \times 7 = 28 \][/tex]
[tex]\[ A = 7^2 = 49 \][/tex]
- For [tex]\( s = 9 \)[/tex]:
[tex]\[ P = 4 \times 9 = 36 \][/tex]
[tex]\[ A = 9^2 = 81 \][/tex]
3. Compare the perimeter and area for each side length:
- For [tex]\( s = 3 \)[/tex]:
[tex]\[ P = 12 \quad \text{and} \quad A = 9 \][/tex]
Here, [tex]\( P \geq A \)[/tex]. (In fact, [tex]\( P > A \)[/tex])
- For [tex]\( s = 5 \)[/tex]:
[tex]\[ P = 20 \quad \text{and} \quad A = 25 \][/tex]
Here, [tex]\( P < A \)[/tex].
- For [tex]\( s = 7 \)[/tex]:
[tex]\[ P = 28 \quad \text{and} \quad A = 49 \][/tex]
Here, [tex]\( P < A \)[/tex].
- For [tex]\( s = 9 \)[/tex]:
[tex]\[ P = 36 \quad \text{and} \quad A = 81 \][/tex]
Here, [tex]\( P < A \)[/tex].
4. Identify the counterexample:
We need to find a value of [tex]\( s \)[/tex] for which the perimeter [tex]\( P \)[/tex] is not less than the area [tex]\( A \)[/tex]. From the calculations above, we see that for [tex]\( s = 3 \)[/tex], the perimeter [tex]\( P = 12 \)[/tex] is greater than the area [tex]\( A = 9 \)[/tex].
Therefore, the counterexample to the conditional statement is:
[tex]\[ \boxed{s = 3} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.