Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Here is the step-by-step process to add the given polynomials and represent the answer in standard form.
Given polynomials:
[tex]\[ \left(-4 y^3 - 5 y + 16\right) + \left(4 y^2 - y + 9\right) \][/tex]
To add these polynomials, we need to combine like terms. Like terms are terms that have the same variable raised to the same power.
### Step-by-Step Solution:
1. Identify and Arrange Like Terms:
- [tex]\( -4 y^3 \)[/tex] (from the first polynomial)
- [tex]\( 4 y^2 \)[/tex] (from the second polynomial)
- [tex]\( -5 y \)[/tex] (from the first polynomial)
- [tex]\( -y \)[/tex] (from the second polynomial)
- [tex]\( 16 \)[/tex] (from the first polynomial)
- [tex]\( 9 \)[/tex] (from the second polynomial)
2. Combine Like Terms:
- For [tex]\( y^3 \)[/tex] terms: There is only one term, [tex]\( -4 y^3 \)[/tex].
- For [tex]\( y^2 \)[/tex] terms: There is only one term, [tex]\( 4 y^2 \)[/tex].
- For [tex]\( y \)[/tex] terms:
[tex]\[ -5 y - y = -6 y \][/tex]
- For constant terms:
[tex]\[ 16 + 9 = 25 \][/tex]
3. Write the Combined Result:
- Combining all the like terms, we have:
[tex]\[ -4 y^3 + 4 y^2 - 6 y + 25 \][/tex]
### Final Answer in Expanded Form:
[tex]\[ \left(-4 y^3 - 5 y + 16\right) + \left(4 y^2 - y + 9\right) = -4 y^3 + 4 y^2 - 6 y + 25 \][/tex]
So, the expanded polynomial in standard form is:
[tex]\[ \boxed{-4y^3 + 4y^2 - 6y + 25} \][/tex]
Given polynomials:
[tex]\[ \left(-4 y^3 - 5 y + 16\right) + \left(4 y^2 - y + 9\right) \][/tex]
To add these polynomials, we need to combine like terms. Like terms are terms that have the same variable raised to the same power.
### Step-by-Step Solution:
1. Identify and Arrange Like Terms:
- [tex]\( -4 y^3 \)[/tex] (from the first polynomial)
- [tex]\( 4 y^2 \)[/tex] (from the second polynomial)
- [tex]\( -5 y \)[/tex] (from the first polynomial)
- [tex]\( -y \)[/tex] (from the second polynomial)
- [tex]\( 16 \)[/tex] (from the first polynomial)
- [tex]\( 9 \)[/tex] (from the second polynomial)
2. Combine Like Terms:
- For [tex]\( y^3 \)[/tex] terms: There is only one term, [tex]\( -4 y^3 \)[/tex].
- For [tex]\( y^2 \)[/tex] terms: There is only one term, [tex]\( 4 y^2 \)[/tex].
- For [tex]\( y \)[/tex] terms:
[tex]\[ -5 y - y = -6 y \][/tex]
- For constant terms:
[tex]\[ 16 + 9 = 25 \][/tex]
3. Write the Combined Result:
- Combining all the like terms, we have:
[tex]\[ -4 y^3 + 4 y^2 - 6 y + 25 \][/tex]
### Final Answer in Expanded Form:
[tex]\[ \left(-4 y^3 - 5 y + 16\right) + \left(4 y^2 - y + 9\right) = -4 y^3 + 4 y^2 - 6 y + 25 \][/tex]
So, the expanded polynomial in standard form is:
[tex]\[ \boxed{-4y^3 + 4y^2 - 6y + 25} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.