Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Here is the step-by-step process to add the given polynomials and represent the answer in standard form.
Given polynomials:
[tex]\[ \left(-4 y^3 - 5 y + 16\right) + \left(4 y^2 - y + 9\right) \][/tex]
To add these polynomials, we need to combine like terms. Like terms are terms that have the same variable raised to the same power.
### Step-by-Step Solution:
1. Identify and Arrange Like Terms:
- [tex]\( -4 y^3 \)[/tex] (from the first polynomial)
- [tex]\( 4 y^2 \)[/tex] (from the second polynomial)
- [tex]\( -5 y \)[/tex] (from the first polynomial)
- [tex]\( -y \)[/tex] (from the second polynomial)
- [tex]\( 16 \)[/tex] (from the first polynomial)
- [tex]\( 9 \)[/tex] (from the second polynomial)
2. Combine Like Terms:
- For [tex]\( y^3 \)[/tex] terms: There is only one term, [tex]\( -4 y^3 \)[/tex].
- For [tex]\( y^2 \)[/tex] terms: There is only one term, [tex]\( 4 y^2 \)[/tex].
- For [tex]\( y \)[/tex] terms:
[tex]\[ -5 y - y = -6 y \][/tex]
- For constant terms:
[tex]\[ 16 + 9 = 25 \][/tex]
3. Write the Combined Result:
- Combining all the like terms, we have:
[tex]\[ -4 y^3 + 4 y^2 - 6 y + 25 \][/tex]
### Final Answer in Expanded Form:
[tex]\[ \left(-4 y^3 - 5 y + 16\right) + \left(4 y^2 - y + 9\right) = -4 y^3 + 4 y^2 - 6 y + 25 \][/tex]
So, the expanded polynomial in standard form is:
[tex]\[ \boxed{-4y^3 + 4y^2 - 6y + 25} \][/tex]
Given polynomials:
[tex]\[ \left(-4 y^3 - 5 y + 16\right) + \left(4 y^2 - y + 9\right) \][/tex]
To add these polynomials, we need to combine like terms. Like terms are terms that have the same variable raised to the same power.
### Step-by-Step Solution:
1. Identify and Arrange Like Terms:
- [tex]\( -4 y^3 \)[/tex] (from the first polynomial)
- [tex]\( 4 y^2 \)[/tex] (from the second polynomial)
- [tex]\( -5 y \)[/tex] (from the first polynomial)
- [tex]\( -y \)[/tex] (from the second polynomial)
- [tex]\( 16 \)[/tex] (from the first polynomial)
- [tex]\( 9 \)[/tex] (from the second polynomial)
2. Combine Like Terms:
- For [tex]\( y^3 \)[/tex] terms: There is only one term, [tex]\( -4 y^3 \)[/tex].
- For [tex]\( y^2 \)[/tex] terms: There is only one term, [tex]\( 4 y^2 \)[/tex].
- For [tex]\( y \)[/tex] terms:
[tex]\[ -5 y - y = -6 y \][/tex]
- For constant terms:
[tex]\[ 16 + 9 = 25 \][/tex]
3. Write the Combined Result:
- Combining all the like terms, we have:
[tex]\[ -4 y^3 + 4 y^2 - 6 y + 25 \][/tex]
### Final Answer in Expanded Form:
[tex]\[ \left(-4 y^3 - 5 y + 16\right) + \left(4 y^2 - y + 9\right) = -4 y^3 + 4 y^2 - 6 y + 25 \][/tex]
So, the expanded polynomial in standard form is:
[tex]\[ \boxed{-4y^3 + 4y^2 - 6y + 25} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.