Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Add. Your answer should be an expanded polynomial in standard form.

[tex] \left(-4y^3 - 5y + 16\right) + \left(4y^2 - y + 9\right) = \square [/tex]

Sagot :

Certainly! Here is the step-by-step process to add the given polynomials and represent the answer in standard form.

Given polynomials:
[tex]\[ \left(-4 y^3 - 5 y + 16\right) + \left(4 y^2 - y + 9\right) \][/tex]

To add these polynomials, we need to combine like terms. Like terms are terms that have the same variable raised to the same power.

### Step-by-Step Solution:

1. Identify and Arrange Like Terms:
- [tex]\( -4 y^3 \)[/tex] (from the first polynomial)
- [tex]\( 4 y^2 \)[/tex] (from the second polynomial)
- [tex]\( -5 y \)[/tex] (from the first polynomial)
- [tex]\( -y \)[/tex] (from the second polynomial)
- [tex]\( 16 \)[/tex] (from the first polynomial)
- [tex]\( 9 \)[/tex] (from the second polynomial)

2. Combine Like Terms:
- For [tex]\( y^3 \)[/tex] terms: There is only one term, [tex]\( -4 y^3 \)[/tex].
- For [tex]\( y^2 \)[/tex] terms: There is only one term, [tex]\( 4 y^2 \)[/tex].
- For [tex]\( y \)[/tex] terms:
[tex]\[ -5 y - y = -6 y \][/tex]
- For constant terms:
[tex]\[ 16 + 9 = 25 \][/tex]

3. Write the Combined Result:
- Combining all the like terms, we have:
[tex]\[ -4 y^3 + 4 y^2 - 6 y + 25 \][/tex]

### Final Answer in Expanded Form:
[tex]\[ \left(-4 y^3 - 5 y + 16\right) + \left(4 y^2 - y + 9\right) = -4 y^3 + 4 y^2 - 6 y + 25 \][/tex]

So, the expanded polynomial in standard form is:
[tex]\[ \boxed{-4y^3 + 4y^2 - 6y + 25} \][/tex]