At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the units of [tex]\( c \)[/tex] in the equation [tex]\( z = c \cdot t + d \)[/tex], we need to carefully analyze the units involved in each term of the equation.
1. Given Units:
- [tex]\( z \)[/tex] is measured in meters (m).
- [tex]\( t \)[/tex] is measured in seconds (s).
- [tex]\( d \)[/tex] is a constant and, like [tex]\( z \)[/tex], is measured in meters (m).
2. Isolate [tex]\( c \)[/tex]:
We can rearrange the equation [tex]\( z = c \cdot t + d \)[/tex] to better understand the units of [tex]\( c \)[/tex].
[tex]\[ z - d = c \cdot t \][/tex]
Since [tex]\( z \)[/tex] and [tex]\( d \)[/tex] are both in meters, [tex]\( z - d \)[/tex] will also be in meters (m).
3. Solve for [tex]\( c \)[/tex]:
[tex]\[ c = \frac{z - d}{t} \][/tex]
4. Substitute Units:
- The numerator [tex]\( z - d \)[/tex] has the units of meters (m).
- The denominator [tex]\( t \)[/tex] has the units of seconds (s).
[tex]\[ c = \frac{\text{meters}}{\text{seconds}} = \frac{m}{s} \][/tex]
Therefore, the units of [tex]\( c \)[/tex] are meters per second (m/s). [tex]\(\boxed{\frac{m}{s}}\)[/tex]
1. Given Units:
- [tex]\( z \)[/tex] is measured in meters (m).
- [tex]\( t \)[/tex] is measured in seconds (s).
- [tex]\( d \)[/tex] is a constant and, like [tex]\( z \)[/tex], is measured in meters (m).
2. Isolate [tex]\( c \)[/tex]:
We can rearrange the equation [tex]\( z = c \cdot t + d \)[/tex] to better understand the units of [tex]\( c \)[/tex].
[tex]\[ z - d = c \cdot t \][/tex]
Since [tex]\( z \)[/tex] and [tex]\( d \)[/tex] are both in meters, [tex]\( z - d \)[/tex] will also be in meters (m).
3. Solve for [tex]\( c \)[/tex]:
[tex]\[ c = \frac{z - d}{t} \][/tex]
4. Substitute Units:
- The numerator [tex]\( z - d \)[/tex] has the units of meters (m).
- The denominator [tex]\( t \)[/tex] has the units of seconds (s).
[tex]\[ c = \frac{\text{meters}}{\text{seconds}} = \frac{m}{s} \][/tex]
Therefore, the units of [tex]\( c \)[/tex] are meters per second (m/s). [tex]\(\boxed{\frac{m}{s}}\)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.