Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the units of [tex]\( c \)[/tex] in the equation [tex]\( z = c \cdot t + d \)[/tex], we need to carefully analyze the units involved in each term of the equation.
1. Given Units:
- [tex]\( z \)[/tex] is measured in meters (m).
- [tex]\( t \)[/tex] is measured in seconds (s).
- [tex]\( d \)[/tex] is a constant and, like [tex]\( z \)[/tex], is measured in meters (m).
2. Isolate [tex]\( c \)[/tex]:
We can rearrange the equation [tex]\( z = c \cdot t + d \)[/tex] to better understand the units of [tex]\( c \)[/tex].
[tex]\[ z - d = c \cdot t \][/tex]
Since [tex]\( z \)[/tex] and [tex]\( d \)[/tex] are both in meters, [tex]\( z - d \)[/tex] will also be in meters (m).
3. Solve for [tex]\( c \)[/tex]:
[tex]\[ c = \frac{z - d}{t} \][/tex]
4. Substitute Units:
- The numerator [tex]\( z - d \)[/tex] has the units of meters (m).
- The denominator [tex]\( t \)[/tex] has the units of seconds (s).
[tex]\[ c = \frac{\text{meters}}{\text{seconds}} = \frac{m}{s} \][/tex]
Therefore, the units of [tex]\( c \)[/tex] are meters per second (m/s). [tex]\(\boxed{\frac{m}{s}}\)[/tex]
1. Given Units:
- [tex]\( z \)[/tex] is measured in meters (m).
- [tex]\( t \)[/tex] is measured in seconds (s).
- [tex]\( d \)[/tex] is a constant and, like [tex]\( z \)[/tex], is measured in meters (m).
2. Isolate [tex]\( c \)[/tex]:
We can rearrange the equation [tex]\( z = c \cdot t + d \)[/tex] to better understand the units of [tex]\( c \)[/tex].
[tex]\[ z - d = c \cdot t \][/tex]
Since [tex]\( z \)[/tex] and [tex]\( d \)[/tex] are both in meters, [tex]\( z - d \)[/tex] will also be in meters (m).
3. Solve for [tex]\( c \)[/tex]:
[tex]\[ c = \frac{z - d}{t} \][/tex]
4. Substitute Units:
- The numerator [tex]\( z - d \)[/tex] has the units of meters (m).
- The denominator [tex]\( t \)[/tex] has the units of seconds (s).
[tex]\[ c = \frac{\text{meters}}{\text{seconds}} = \frac{m}{s} \][/tex]
Therefore, the units of [tex]\( c \)[/tex] are meters per second (m/s). [tex]\(\boxed{\frac{m}{s}}\)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.