Answered

Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Polygon WXYZ is dilated by a scale factor of 3 with vertex [tex]$W$[/tex] as the center of dilation, resulting in polygon [tex]$W^{\prime} X^{\prime} Y^{\prime} Z^{\prime}$[/tex]. The coordinates of point [tex]$W$[/tex] are [tex]$(3,2)$[/tex], and the coordinates of point [tex]$X$[/tex] are [tex]$(7,5)$[/tex].

Select the correct statement.
A. The slope of [tex]$\overline{W^{\prime}X^{\prime}}$[/tex] is [tex]$\frac{3}{4}$[/tex], and the length of [tex]$\overline{W^{\prime}X^{\prime}}$[/tex] is 5.
B. The slope of [tex]$\overline{WX}$[/tex] is [tex]$\frac{9}{4}$[/tex], and the length of [tex]$\overline{WX}$[/tex] is 15.
C. The slope of [tex]$\overline{W^{\prime}X^{\prime}}$[/tex] is [tex]$\frac{3}{4}$[/tex], and the length of [tex]$\overline{W^{\prime}X^{\prime}}$[/tex] is 15.
D. The slope of [tex]$\overline{W^{\prime}X}$[/tex] is [tex]$\frac{9}{4}$[/tex], and the length of [tex]$\overline{W^{\prime}X}$[/tex] is 5.

Sagot :

To tackle this problem, let's first understand dilation and how it affects points and lines on a plane. Given that the center of dilation [tex]\(W\)[/tex] is at [tex]\((3, 2)\)[/tex] and point [tex]\(X\)[/tex] is at [tex]\((7, 5)\)[/tex], let's dilate point [tex]\(X\)[/tex] with a scale factor of 3.

### Calculating the coordinates of [tex]\(X'\)[/tex]

1. Find the relative coordinates of [tex]\(X\)[/tex] with respect to [tex]\(W\)[/tex]:
[tex]\[ \Delta x = 7 - 3 = 4 \][/tex]
[tex]\[ \Delta y = 5 - 2 = 3 \][/tex]

2. Apply the scale factor to these relative coordinates:
[tex]\[ \Delta x' = 4 \times 3 = 12 \][/tex]
[tex]\[ \Delta y' = 3 \times 3 = 9 \][/tex]

3. Determine the coordinates of [tex]\(X'\)[/tex] by adding these scaled relative coordinates back to [tex]\(W\)[/tex]:
[tex]\[ X' = (3 + 12, 2 + 9) = (15, 11) \][/tex]

### Calculating the slopes

4. Slope of the line segment [tex]\(\overline{WX}\)[/tex]:
[tex]\[ \text{slope}_{WX} = \frac{5 - 2}{7 - 3} = \frac{3}{4} \][/tex]

5. Slope of the line segment [tex]\(\overline{W'X'}\)[/tex]:
[tex]\[ \text{slope}_{W'X'} = \frac{11 - 2}{15 - 3} = \frac{9}{12} = \frac{3}{4} \][/tex]

### Calculating the lengths

6. Length of the original segment [tex]\(\overline{WX}\)[/tex]:
[tex]\[ \text{length}_{WX} = \sqrt{(7 - 3)^2 + (5 - 2)^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \][/tex]

7. Length of the dilated segment [tex]\(\overline{W'X'}\)[/tex]:
[tex]\[ \text{length}_{W'X'} = 3 \times \text{length}_{WX} = 3 \times 5 = 15 \][/tex]

### Conclusion

With these calculations, we see that:
- The slope of [tex]\(\overline{W'X'}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex].
- The length of [tex]\(\overline{W'X'}\)[/tex] is 15.

Thus, the correct statement is:
C. The slope of [tex]\(\overline{W^{\prime} X^{\prime}}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex], and the length of [tex]\(\overline{W^{\prime} X^{\prime}}\)[/tex] is 15.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.