At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To tackle this problem, let's first understand dilation and how it affects points and lines on a plane. Given that the center of dilation [tex]\(W\)[/tex] is at [tex]\((3, 2)\)[/tex] and point [tex]\(X\)[/tex] is at [tex]\((7, 5)\)[/tex], let's dilate point [tex]\(X\)[/tex] with a scale factor of 3.
### Calculating the coordinates of [tex]\(X'\)[/tex]
1. Find the relative coordinates of [tex]\(X\)[/tex] with respect to [tex]\(W\)[/tex]:
[tex]\[ \Delta x = 7 - 3 = 4 \][/tex]
[tex]\[ \Delta y = 5 - 2 = 3 \][/tex]
2. Apply the scale factor to these relative coordinates:
[tex]\[ \Delta x' = 4 \times 3 = 12 \][/tex]
[tex]\[ \Delta y' = 3 \times 3 = 9 \][/tex]
3. Determine the coordinates of [tex]\(X'\)[/tex] by adding these scaled relative coordinates back to [tex]\(W\)[/tex]:
[tex]\[ X' = (3 + 12, 2 + 9) = (15, 11) \][/tex]
### Calculating the slopes
4. Slope of the line segment [tex]\(\overline{WX}\)[/tex]:
[tex]\[ \text{slope}_{WX} = \frac{5 - 2}{7 - 3} = \frac{3}{4} \][/tex]
5. Slope of the line segment [tex]\(\overline{W'X'}\)[/tex]:
[tex]\[ \text{slope}_{W'X'} = \frac{11 - 2}{15 - 3} = \frac{9}{12} = \frac{3}{4} \][/tex]
### Calculating the lengths
6. Length of the original segment [tex]\(\overline{WX}\)[/tex]:
[tex]\[ \text{length}_{WX} = \sqrt{(7 - 3)^2 + (5 - 2)^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \][/tex]
7. Length of the dilated segment [tex]\(\overline{W'X'}\)[/tex]:
[tex]\[ \text{length}_{W'X'} = 3 \times \text{length}_{WX} = 3 \times 5 = 15 \][/tex]
### Conclusion
With these calculations, we see that:
- The slope of [tex]\(\overline{W'X'}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex].
- The length of [tex]\(\overline{W'X'}\)[/tex] is 15.
Thus, the correct statement is:
C. The slope of [tex]\(\overline{W^{\prime} X^{\prime}}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex], and the length of [tex]\(\overline{W^{\prime} X^{\prime}}\)[/tex] is 15.
### Calculating the coordinates of [tex]\(X'\)[/tex]
1. Find the relative coordinates of [tex]\(X\)[/tex] with respect to [tex]\(W\)[/tex]:
[tex]\[ \Delta x = 7 - 3 = 4 \][/tex]
[tex]\[ \Delta y = 5 - 2 = 3 \][/tex]
2. Apply the scale factor to these relative coordinates:
[tex]\[ \Delta x' = 4 \times 3 = 12 \][/tex]
[tex]\[ \Delta y' = 3 \times 3 = 9 \][/tex]
3. Determine the coordinates of [tex]\(X'\)[/tex] by adding these scaled relative coordinates back to [tex]\(W\)[/tex]:
[tex]\[ X' = (3 + 12, 2 + 9) = (15, 11) \][/tex]
### Calculating the slopes
4. Slope of the line segment [tex]\(\overline{WX}\)[/tex]:
[tex]\[ \text{slope}_{WX} = \frac{5 - 2}{7 - 3} = \frac{3}{4} \][/tex]
5. Slope of the line segment [tex]\(\overline{W'X'}\)[/tex]:
[tex]\[ \text{slope}_{W'X'} = \frac{11 - 2}{15 - 3} = \frac{9}{12} = \frac{3}{4} \][/tex]
### Calculating the lengths
6. Length of the original segment [tex]\(\overline{WX}\)[/tex]:
[tex]\[ \text{length}_{WX} = \sqrt{(7 - 3)^2 + (5 - 2)^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \][/tex]
7. Length of the dilated segment [tex]\(\overline{W'X'}\)[/tex]:
[tex]\[ \text{length}_{W'X'} = 3 \times \text{length}_{WX} = 3 \times 5 = 15 \][/tex]
### Conclusion
With these calculations, we see that:
- The slope of [tex]\(\overline{W'X'}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex].
- The length of [tex]\(\overline{W'X'}\)[/tex] is 15.
Thus, the correct statement is:
C. The slope of [tex]\(\overline{W^{\prime} X^{\prime}}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex], and the length of [tex]\(\overline{W^{\prime} X^{\prime}}\)[/tex] is 15.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.