Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To tackle this problem, let's first understand dilation and how it affects points and lines on a plane. Given that the center of dilation [tex]\(W\)[/tex] is at [tex]\((3, 2)\)[/tex] and point [tex]\(X\)[/tex] is at [tex]\((7, 5)\)[/tex], let's dilate point [tex]\(X\)[/tex] with a scale factor of 3.
### Calculating the coordinates of [tex]\(X'\)[/tex]
1. Find the relative coordinates of [tex]\(X\)[/tex] with respect to [tex]\(W\)[/tex]:
[tex]\[ \Delta x = 7 - 3 = 4 \][/tex]
[tex]\[ \Delta y = 5 - 2 = 3 \][/tex]
2. Apply the scale factor to these relative coordinates:
[tex]\[ \Delta x' = 4 \times 3 = 12 \][/tex]
[tex]\[ \Delta y' = 3 \times 3 = 9 \][/tex]
3. Determine the coordinates of [tex]\(X'\)[/tex] by adding these scaled relative coordinates back to [tex]\(W\)[/tex]:
[tex]\[ X' = (3 + 12, 2 + 9) = (15, 11) \][/tex]
### Calculating the slopes
4. Slope of the line segment [tex]\(\overline{WX}\)[/tex]:
[tex]\[ \text{slope}_{WX} = \frac{5 - 2}{7 - 3} = \frac{3}{4} \][/tex]
5. Slope of the line segment [tex]\(\overline{W'X'}\)[/tex]:
[tex]\[ \text{slope}_{W'X'} = \frac{11 - 2}{15 - 3} = \frac{9}{12} = \frac{3}{4} \][/tex]
### Calculating the lengths
6. Length of the original segment [tex]\(\overline{WX}\)[/tex]:
[tex]\[ \text{length}_{WX} = \sqrt{(7 - 3)^2 + (5 - 2)^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \][/tex]
7. Length of the dilated segment [tex]\(\overline{W'X'}\)[/tex]:
[tex]\[ \text{length}_{W'X'} = 3 \times \text{length}_{WX} = 3 \times 5 = 15 \][/tex]
### Conclusion
With these calculations, we see that:
- The slope of [tex]\(\overline{W'X'}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex].
- The length of [tex]\(\overline{W'X'}\)[/tex] is 15.
Thus, the correct statement is:
C. The slope of [tex]\(\overline{W^{\prime} X^{\prime}}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex], and the length of [tex]\(\overline{W^{\prime} X^{\prime}}\)[/tex] is 15.
### Calculating the coordinates of [tex]\(X'\)[/tex]
1. Find the relative coordinates of [tex]\(X\)[/tex] with respect to [tex]\(W\)[/tex]:
[tex]\[ \Delta x = 7 - 3 = 4 \][/tex]
[tex]\[ \Delta y = 5 - 2 = 3 \][/tex]
2. Apply the scale factor to these relative coordinates:
[tex]\[ \Delta x' = 4 \times 3 = 12 \][/tex]
[tex]\[ \Delta y' = 3 \times 3 = 9 \][/tex]
3. Determine the coordinates of [tex]\(X'\)[/tex] by adding these scaled relative coordinates back to [tex]\(W\)[/tex]:
[tex]\[ X' = (3 + 12, 2 + 9) = (15, 11) \][/tex]
### Calculating the slopes
4. Slope of the line segment [tex]\(\overline{WX}\)[/tex]:
[tex]\[ \text{slope}_{WX} = \frac{5 - 2}{7 - 3} = \frac{3}{4} \][/tex]
5. Slope of the line segment [tex]\(\overline{W'X'}\)[/tex]:
[tex]\[ \text{slope}_{W'X'} = \frac{11 - 2}{15 - 3} = \frac{9}{12} = \frac{3}{4} \][/tex]
### Calculating the lengths
6. Length of the original segment [tex]\(\overline{WX}\)[/tex]:
[tex]\[ \text{length}_{WX} = \sqrt{(7 - 3)^2 + (5 - 2)^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \][/tex]
7. Length of the dilated segment [tex]\(\overline{W'X'}\)[/tex]:
[tex]\[ \text{length}_{W'X'} = 3 \times \text{length}_{WX} = 3 \times 5 = 15 \][/tex]
### Conclusion
With these calculations, we see that:
- The slope of [tex]\(\overline{W'X'}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex].
- The length of [tex]\(\overline{W'X'}\)[/tex] is 15.
Thus, the correct statement is:
C. The slope of [tex]\(\overline{W^{\prime} X^{\prime}}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex], and the length of [tex]\(\overline{W^{\prime} X^{\prime}}\)[/tex] is 15.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.